
GSFC/CPm1998-206860

Second International Workshop on
Software Engineering and Code Design
in Parallel Meteorological and
Oceanographic Applications

Matthew 0 'Keefe, Christopher Kerr, Editors

Proceedings of a workshop sponsored by the

U.S. Department of Energy, Office of Biological and

Environmental Research; the Department of Defense,

High Performance Computing and Modernization

Office; and the NASA Goddard Space Flight Center,

Seasonal-to-lnterannual Prediction Project, and held

at the Camelback Inn, Scottsdale, Arizona

June 15-18, 1998

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

June 1998

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to

the NASA STI Database, the largest collection of
aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These

results are published by NASA in the NASA STI

Report Series, which includes the following

report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data or

theoretical analysis. Includes compilations of

significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of

peer-reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by NASA.

SPECIAL PUBLICATION. Scientific, techni-
cal, or historical information from NASA

programs, projects, and mission, often con-

cerned with subjects having substantial public
interest.

TECHNICAL TRANSLATION.

English-language translations of foreign scien-

tific and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include creat-

ing custom thesauri, building customized data-

bases, organizing and publishing research results.
• . even providing videos.

For more information about the NASA STI Pro-

gram Office, see the following:

• Access the NASA STI Program Home Page at

http://www.sti.nasa.gov/STI-homepage.html

• E-mail your question via the Internet to

help@sti.nasa.gov

° Fax your question to the NASA Access Help
Desk at (301) 621-0134

• Telephone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

GSFC/CP.--1998-206860

Second International Workshop on

Software Engineering and Code Design

in Parallel Meteorological and

Oceanographic Applications

Matthew 0 'Kee3_, University of Minnesota

Christopher Kerr, International Business Machines

Proceedings of a workshop sponsored by the

US. Department of Energy, Office of Biological and

Environmental Research; the Department of Defense,

High Performance Compuang and Modernization

Office; and the NASA Goddard Space Flight Center,

Seasonal-to-lnterannual Prediction Project, and held

at the Camelback lnn, Scottsdale, Arizona

June 15-18, 1998

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

June 1998

This is a preprint of a paper intended for presentation at a conference. Because changes may be
made before formal publication, this is made available with the understanding that it will not
be cited or reproduced without the permission of the author.

Available from:

NASA Center for AeroSpace Information
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934
Price Code: A17

NationalTechnicalInformationService

5285PortRoyalRoad

Springfield,VA 22161
PriceCode:AI0

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Workshop Organizing Committee

Matthew O'Keefe Christopher Kerr

University of Minnesota International Business Machines

Workshop Coordinator

Wendy Marshall

Geophysical Fluid Dynamics Laboratory/NOAA

Scientific Program Committee

David Dent

European Center for Medium Range Weather Forecasts

Steven Hammond

National Center for Atmospheric Research

Matthew O'Keefe

University of Minnesota

Christopher Kerr
International Business Machines

Luke Lonergan

High Performance Technologies Inc.

Robert Malone

Los Alamos National Laboratory

John Michalakes

Argonne National Laboratory

Max Suarez

NASA/Goddard Space Flight Center

Steven Thomas

Environnement Canada

Alan Wallcrafi

NRL/Stennis Space Center

Workshop Sponsors

U.S. DEPARTMENT OF ENERGY,
OFFICE OF BIOLOGICAL AND ENVIRONMENTAL RESEARCH

U.S. DEPARTMENT OF DEFENSE,
HIGH PERFORMANCE COMPUTING AND MODERNIZATION OFFICE

U.S. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
SEASONAL-TO-INTERANNUAL PREDICTION PROJECT, GODDARD SPACE FLIGHT CENTER

ii

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Workshop Schedule

Monday Morning, June 15, 1998

8:00 am

8:45 am

Session 1

9:00 am

9:45 am

10:00 am

10:45 am

Registration and Breakfast

Matthew O'Keefe, University of Minnesota Welcome and Opening Remarks

Christopher Kerr, IBM

Atmospheric Models

Session Chairperson: Steven Thomas

Mike Desgagne,
Environnement Canada

George Mozdzynski,
ECMWF

Bertrand Denis,

Canadian Centre for Climate

Modelling and Analysis

11:30 am Richard S. Hemler,
GFDL

12:15 pm

Performance of MC2 and the ECMWF IFS Forecast

Model on the Fujitsu VPP700 and NEC SX-4M 1

Break with Refreshments

Parallelization of the ECMWF Integrated Forecasting

System .. 13

Coarse-grain Parallelization of the CCCma Atmospheric
GCM on a NEC SX-4 15

Key Elements of the User-Friendly, GFDL SKYHI
General Circulation Model 29

Lunch

Monday Afternoon, June 15, 1998

Session 2 Atmospheric Models

Session Chairperson: Steven Hammond

l:30pm Daniel S. Schaffer,

NASA/Goddard Space Flight Center

2:15 pm Ulrich Schaettler,

Deutscher Wetterdienst

3:00 pm Frederick Rawlins,

UK Meteorological Office

3:45 pm

4:00 pm Steve Thomas,
Environnement Canada

Design and Performance Analysis of a Massively

Parallel Atmospheric General Circulation Model 45

Requirements and Problems in Parallel Model

Development at DWD 57

Experiences with Parallelisation of the Unified Model

at the UK Meteorological Office 69

Break with Refreshments

Optimizing MC2 for RISC Architectures: Forecast

Accuracy versus Performance 77

iii

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

4:45 pm

5:30 pm

6:00 pm

Giri Chukkapalli,

San Diego Supercomputer Center

A Theoretical and Experimental Analysis of Parallel

Complexity of Weather and Climate Algorithms using
the Shallow Water Benchmark Suite 95

Break

Buffet and Panel Discussion Future Directions of Hardware Architectures

Session Chairperson: Luke Lonergan

Greg Lindahl, University of Virginia

Philip Mucci, University of Tennessee

Steve Thomas, Environnement Canada

Alan Wallcraft, Naval Research Laboratory

iv

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Tuesday Morning, June 16, 1998

8:00 arn Breakfast

Session 4 Atmospheric Models

Session Chairperson: John Michalakes

8:45 am Tom Rosmond,

Naval Research Laboratory

A Scaleable Version of the Navy Operational Global

Atmospheric Prediction System Spectral Forecast
Model ... 97

9:30 am Kenneth Pollak,

Fleet Numerical Meteorology

and Oceanography Center

Navy Weather and Oceanography in the Next

Century - A New Challenge In Numerical

Modeling 103

10:15 am Break with Refreshments

Session 5 Atmospheric Models

Session Chairperson: Frederick Rawlins

10:30 am Venkatramani Balaji,

Silicon Graphics/Cray Research

Parallelization of a Spectral Atmospheric GCM 115

11:15 pm John Michalakes,

Argonne National Laboratory

The Same-Source Parallel MM5 129

12:00 pm Lunch

Tuesday Afternoon, June 16, 1998

1:15 pm Joseph M. Prusa,
Iowa State University

Session 6 Data Assimilation Models

Session Chairperson: Max Suarez

2:00 pm Jing Guo,

NASA, Goddard Space Flight
Center

2:20 pm Jay Larson,

University of Maryland

2:45 pm Robert Lucchesi,

NASA, Goddard Space Flight
Center

3:10 pm

Simulations of Gravity Wave Induced Turbulence

Using 512 PE Cray T3E 139

An Overview of the Physical-Space Statistical

Analysis System Development at the Data
Assimilation Office 153

Incorporating Parallel Computing into the Goddard
Earth Observing System Data Assimilation

System (GEO DAS) 155

I/O Parallelization for the Goddard Earth

Observing System Data Assimilation System
(GEOS DAS) 157

Break with Refreshments

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

3:25 pm

4:10 pm

4:55 pm

6:00 pm

Chris H.Q. Ding, Parallel Atmospheric Data Assimilation 163

Lawrence Berkeley National Laboratory

Lang-Ping Chang, Implementation of a Parallel Kalman Filter for

NASA, Goddard Space Flight Center Stratospheric Chemical Tracer Assimilation 165

Break

Buffet and Panel Discussion

Session Chairperson:

Matthew O' Keefe

Future Direction of Modular Design and Parallel

Programming Paradigms

Christopher Kerr, International Business Machines

Greg Lindahl, University of Virginia

Robert Malone, Los Alamos National Laboratory

James McGraw, Lawrence Livermore National Laboratory

George Mozdzynski, ECMWF

Kenneth Pollak, Fleet Numerical Meteorology and Oceanography Center

Steve Thomas, Environnement Canada

Alan Wallcraft, Naval Research Laboratory

vi

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Wednesday Morning, June 17, 1998

8:00 am

Session 8

8:45 am

9:30 am

10:15 am

10:30 am

Ocean Models

Session Chairperson: Christopher Kerr

Alan J. Wallcraft,

Naval Research Laboratory

Matthew T. O'Keefe,

University of Minnesota

John M. Levesque,

Applied Parallel Research

Breakfast

A Comparison of Several Scalable Programming
Models ... 183

Issues in the Design of Parallel Ocean Circulation
Models ... 199

Break with Refreshments

Optimizing POP for a Cache Based Architecture 207

Session 9

11:15 am

12:00 pm

Ocean Models

Session Chairperson: Alan J. Wallcraft

Steve Piacsek,

Naval Research Laboratory

Performance of Barotropic Ocean Models on Shared

and Distributed Memory Computers 209

Lunch

Wednesday Afternoon, June 17, 1998

1:15 pm Mohamed Iskandarani,

Rutgers University

2:00 pm Hong Ma,

Brookhaven National Laboratory

Parallel Performance of a 3D Spectral Element Ocean
Model .. 225

Massively Parallel Implementation of a High Order

Domain Decomposition Equatorial Ocean
Model .. 227

Session 10 Coupled Atmospheric and Ocean Models

Session Chairperson: Bob Malone

2:45 pm

3:30 pm

Philip W. Jones,

Los Alamos National Laboratory

The Los Alamos Coupled Climate Model. 239

Break with Refreshments

vii

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

3:45 pm Rodney James,

NCAR

Portability and Performance of a Parallel Coupled
Climate Model 249

4:30 pm John D. Farrara,

University of California, Los Angeles

An Atmospheric General Circulation Model with

Chemistry for the CRAY T3E: Design, Performance

Optimization and Coupling to an Ocean Model 251

5:15 pm Break

°..

Vlll

SecondInternationalWorkshoponSoftwareEngineeringandCodeDesign
inParallelMeteorologicalandOceanographicApplications

ThursdayMorning, June 18, 1998

8:00 am Breakfast

Session 11 Programming and Performance Models

8:45 am

9:30 am

10:15 am

10:30 am

11:15 am

12:00 am

12:45 pm

Session Chairperson: Luke Lonergan

Robert W. Numrich,

Silicon Graphics/Cray Research

Greg Lindahl,

University of Virginia

Patrick H. Worley,

Oak Ridge National Laboratory

Suraj C. Kothari,
Iowa State University

Chris R. Warber,

Pacific-Sierra Research Corporation

Co-Array Fortran: current status and recent results
with MICOM 265

Metacomputing - What's in it for me? 269

Break with Refreshments

Impact of Communication Protocol on
Performance 277

Parallelization Agent: A Knowledge-based

System ... 289

DEEP: A Development Environment for Parallel

Programs 299

Lunch

Thursday Afternoon, June 18, 1998

Session 12

1:15 pm

3:00 pm

Workshop Summary and Panel Discussion

Session Chairperson: Matthew O'Keefe

Workshop Adjourns

ix

X

PERFORMANCE OF MC2 AND THE ECMWF IFS FORECAST

MODEL ON THE FUJITSU VPP700 AND NEC SX-4M

M. Desgagn_, D. Dent, S. Thomas, M. Valin, G. Mozdzynski

Recherche en pr_vision num_rique (RPN), Environment Canada,

2121, route Transcanadienne, Dorval, Quebec H9P 1J3, CANADA

michel, desgagne@ec, gc. ca, steve, thomasOec, gc. ca

michel, valin@ec, gc. ca

Tel. 1-514-421-4661, FAX 1-514-421-2106

European Centre for Medium Range Weather Forecasts

Shinfield Park, Reading, ENGLAND RG2 9AX

david, dent@ecmwf, int, george.mozdzynski@ecmwf, int

Abstract

The NEC SX-4M cluster and Fujitsu VPPT00 supercomputers are both based on

custom vector processors using low-power CMOS technology. Their basic architec-

tures and programming models are however somewhat different. A multi-node SX-

4M cluster contains up to 32 processors per shared memory node, with a maximum

of 16 nodes connected via the proprietary NEC IXS fibre channel crossbar network.

A hybrid combination of inter-node MPI message-passing with intra-node multi-

tasking or threads is possible. The Fujitsu VPPT00 is a fully distributed-memory

vector machine with a scalable crossbar interconnect which also supports MPI. The

parallel performance of the MC2 model for high-resolution mesoscale forecasting

over large domains and of the IFS RAPS 4.0 benchmark are presented for several

different machine configurations. These include an SX-4/32 with 8 GB main mem-

ory unit (MMU), an SX-4/32M cluster (SX-4/16, 8 GB MMU + SX-4/16, 4 GB

MMU) and up to 80 PE's of the VPP700.

1. Introduction

John Hennessy, professor of computer science, dean of the Stanford University School of

Engineering and co-inventor of the MIPS RISC microprocessor recently speculated during

the Supercomputing 97 conference in San Jose that vector processors would disappear

from high-performance computing within five to ten years [4]. Given the impressive

sustained floating point execution rates of the NEC SX-4 and Fujitsu VPP700 vector

processors, these two Japanese computer vendors could easily argue that 'reports of

their demise are greatly exaggerated'. Despite the fact that the peak execution rates

of pipelined RISC microprocessors continue to double every eighteen months, highly

optimized codes can usually sustain no more than 15 to 20% of peak. This situation may

change as larger secondary cache memories become available. However, the SX-4 vector

processor can routinely achieve 1 Gflops/sec or higher on representative atmosphere,

ocean and climate codes. Indeed, both SX-4 and VPP700 processors can sustain in

the range of 30 to 50% of their rated peak performance levels. Both NEC and Fujitsu

build scalable parallel architectures based on these processors with existing or planned

customer installations capable of 100 Gflops/sec or higher sustained performance.

Cluster type architectures are becoming prevalent in high-performance computing and

current designs can trace their roots back to the pioneering work of Paul Woodward who

demonstrated the capabilities of symmetric multiprocessor (SMP) cluster supercomput-

ing in 1993 [9]. The US Department of Energy's Accelerated Strategic Computing Ini-

tiative (ASCI) has also led to the announcement of cluster type computers from several

US manufacturers. Individual nodes contain from 1 to 128 RISC/cache or vector proces-

sors. Typically, shared or distributed-shared memory (DSM) is used within a node and

additional cache-coherence mechanisms are often present. Low-latency, high-bandwidth

interconnection networks then link these nodes together. NEC SX-4M clusters and the

Fujitsu VPP700 perhaps represent opposite ends of the design spectrum. SX-4 nodes

contain up to 32 vector processors and 8 Gbytes of fast SSRAM main memory, whereas

the VPP700 is a fully distributed-memory machine. Each VPP700 processing element

contains a vector processor along with up to 2 Gbytes of slower SDRAM memory. The

two machines are compared in this paper by using benchmarks of two decidely different

atmospheric models. The ECMWF IFS forecast model is a global weather prediction

model based on the spectral transform method. The Canadian MC2 is a nonhydrostatic,

fully compressible limited area atmospheric model designed for high-resolution mesoscale

forecasting. A fully 3D semi-implicit scheme is implemented with second-order finite

differences in space. Both models implement semi-Lagrangian advection with overlaps.

2. The NEC SX-4M and Fujitsu VPP700

The multi-node NEC SX-4M is an SMP cluster type architecturewith up to 32 proces-
sorsper node and a maximumof 16 nodesinterconnectedvia the proprietary NEC IXS
crossbarnetwork with fibre channelinterface. Eachnodeexecutesan enhancedversion

of UNIX System V with featuressuch as resourcesharing groups (RSG) to dedicate
resourcesto singleor multi-nodejobs. The total 8 Gbytes/secIXS (bi-directional) band-
width is augmentedby a direct memory-mappedaddressingschemebetweennodes[3].
EachCPU of the SX-4 containsa scalar unit and a vector unit. The vector processoris
basedon low-powerCMOS technologywith a clockcycle time of 8ns (125MHz). Three
floating point formats aresupported: IEEE 754,Cray, and IBM. The vector unit of each
processorconsistsof 8 parallelsetsof 4 vectorpipelines,1add/shift, 1 multiply, 1 divide,
and 1 logical. For eachvector unit there are8 64-bit vector arithmetic registersand 64
64-bit vector data registersusedastemporary space.The peak performanceof a concur-
rent vector add and vectormultiply is 2 Gflops/secand atmosphericcodescansustain 1
Gflops/secor higher. Main Memory Unit (MMU) configurationsfor a node rangefrom
512 Mbytesto 8 Gbytesof 15nsSynchronousStatic RandomAccessMemory (SSRAM).
The maximum 8 Gbytesconfigurationcomprises32banksof 256Mbytes each,providing
memory bandwidths of 16 Gbytes/sec per processor. Supplementingmain memory is
16or 32 Gbytes of eXtendedMemory Unit (XMU) built with 60nsDynamic Random
AccessMemory (DRAM) and having a 4 Gbyte/secbandwidth. MPI/SX is basedon a
port of the MPICH packageby NEC's C & C EuropeanLab with the assistanceof Rusty
Lusk and Bill Gropp from ArgonneNational Laboratory [3].

A processingelement of the Fujitsu VPP700 also contains both a scalar and vector
unit. The vector unit consistsof 8 functional units which can operate in parallel. The
peak performanceof the vector unit is 2.2 Gflops/sec,whereasthe scalar unit is a 100
Mflops/sec processor. Both 32 and 64-bit IEEE floating point formats are supported.
Each PE can be configured with up to 2 Gbytes of SynchronousDynamic Random
AccessMemory (SDRAM). A full copy of the 32-bit UNIX operating system kernel is
executedby each processorwith 1.7 Gbytes available for programs and data. A 64-
bit operating system is planned for the next generationVPP architecture with up to
8 Gbytes of memory per PE. Processingelementsare interconnectedwith a scalable
crossbar switching network, capableof 570 Mbytes/sec (bi-directional) point-to-point
transfer rates. MPI is implemented on top of the proprietary VPP message-passing
layer. Any processorcanmakeI/O requestsbut only 11of the 116VPP700 PE's at the
ECMWF (the so-calledI/O processors)areconfiguredwith disks.

3

3. Parallel Programming Models

Climate and ocean modeling groups at NCAR [5] and the University of Minnesota [6] have

identified and tested hybrid programming models for SMP architectures. Shared-memory

tasking mechanisms or threads can be applied for intra-node parallelism, whereas inter-

node communication is implemented with MPI. Coarse-grain tasks on an SX-4 node are

created with the pt_fork and pt_join primitives and loop-level parallelism in the form

of micro-tasking is specified through the inline compiler directive vdir pardo. A POSIX

threads compliant library pt_thread is also available. With the recent acceptance of

an OpenMP standard for shared-memory parallelism, it should now be possible to build

portable codes employing both MPI and auto-tasking. The MC2 model is discretised on

a Nx x Ny x Nz grid, where the number of points in the vertical direction is typically

one order of magnitude less than in the horizontal. A distributed-memory model of

computation is based on a domain decomposition across a Px x Py processor mesh. All

vertical loops in the dynamics and physics code are micro-tasked, allowing for a hybrid

combination with boundary exchanges implemented using MPI. The elliptic solver in

MC2 is a minimal residual Krylov iteration with line relaxation preconditioners (see

Skamarock et al. [7] and Thomas et al. [8]). To handle global data dependencies, a data

transposition strategy is implemented using MPI all-to-all communication. Fixed-size

halos are implemented for semi-Lagrangian advection.

The IFS forecast model is a global spectral model which can use either a full or reduced

Gaussian grid. In the case of a reduced grid, the number of grid points along a latitude

line decreases near the poles. Both Eulerian and semi-Lagrangian advection schemes are

available. A parallel domain decomposition is based on a latitude by longitude decompo-

sition in grid point, Fourier and spectral space where NPROC = NPROCA x NPROCB.

A data transposition strategy is implemented between each computational phase of a

time-step. A fixed overlap strategy is also implemented for the distributed-memory

implementation of semi-Lagrangian advection where the global maximum wind-speed

determines the halo size (see Dent and Mozdzynski [2]). The shared-memory version of

the model is still retained and was not sacrificed in order to build a distributed-memory

implementation. In fact, the IFS model can be run in a hybrid shared/distributed config-

uration. FFT's are computed on all processors and are independent in both the vertical

and longitudinal directions. Likewise, the Legendre transforms are also executed on all

processors and are independent in the vertical and over spectral waves. Finally, the IFS

has been coded to perform effectively on both vector and RISC/cache architectures by

supporting a runtime parameter NPROMA which controls locality of reference.

4

4. Benchmark Results

We have benchmarked the full forecast configurations of the MC2 (adiabatic kernel +

RPN physics version 3.5) and IFS models at the CMC in Montreal and at the ECMWF

in Reading. The current CMC configuration consists of the operational machine 'hiru',

an SX-4/32 with 8 Gbyte MMU along with 'yonaka' (SX-4/16 + 4 GB MMU) and 'asa'

(SX-4/16 + 8 GB MMU). The two SX-4/16 nodes can operate as an SX-4/32M cluster

and all three machines will be connected to the IXS crossbar in 1998. Four full nodes in an

SX-4/128M cluster should be in place by the year 2000 or 2001, with a peak performance

of 256 Gflops/sec. Given our results to date, it is reasonable to expect that 50% of peak

is possible on such a machine. The ECMWF VPP700 is currently configured with 116

PE's, each containing 2 Gbytes of memory or 232 Gbytes in total.

The MC2 model is written in Fortran 77 with Cray POINTER extensions for dynamic

memory allocation. The code was compiled using 32-bit arithmetic on both the SX-4

and VPP700. Whereas the IBM floating point format was specified on the SX-4, 32-bit

IEEE arithmetic was used on the VPP700. The only compiler options specified to assist

in vectorisation were -pvctl noassume loopcnt--1000000. Extensive inline compiler di-

rectives such as vdir nodep are specified in the physics library due to dynamic memory

allocation. The SX-4 compiler is conservative and assumes both aliasing and recurrences

are present unless otherwise indicated. The vectorisation level on the SX-4 (scalar ver-

sus vector instructions) then usually exceeds 98%. Similar directives were specified to

the VPP700 Fortran 90 compiler frt. Multi-node SX-4 runs require a mpi.hosts file

containing the number of processes to launch on each node. In particular, the order of

processes launched from this file determines their rank in MPI_C01_I_W0P_LD.

The IFS forecast model code is written in a subset of Fortran 90 with extensive use of

ALLOCATABLE arrays. The model code was compiled for 64-bit IEEE arithmetic on both

the SX-4 and VPPT00 machines. In fact, this was our first experience at RPN/CMC

with the NEC Fortran 90 compiler. It was found to be far too slow for production usage

and would likely perform better as a cross-compiler similar to Fujitsu's frtpx run on a

SGI/Cray Origin 2000 at the ECMWF. Vectorisation and performance of the IFS code are

largely determined by the NAMELIST parameters NRPR01_ for the radiation package and

NPP,0MA in the dynamics. In all tests we varied NP_0CA and set NPROCB=I [1]. Performance

data for the IFS RAPS 4.0 benchmark (T106L19, T213L31) and an MC2 run at 10kin

resolution using a 512 × 432 × 41 grid (10 × At = 180sec) are presented at the end of

the paper. In both cases, multi-node performance is higher from 8 up to 32 PE's on the

SX-4.

5. Discussion and Conclusions

For both the MC2 and IFS models, we encountered what might be best characterized as

a problem with 'memory starved' nodes. The SX-4 has 128 Mbytes of SSRAM memory

per Gflop of computing power, whereas the VPP700 has over 900 Mbytes of SDRAM

per Gflop, a factor of 7 more in terms of memory size. In the case of the SX-4, it

appears that 8 Gbytes of fast SSRAM may not be sufficient for 32 processors, each

operating at 1 Gflop/sec, in a single distributed-memory program. Since the SX-4 is

a 'transition' machine, designed to support both a traditional computing mix of single

threaded jobs and scalable multi-node applications, certain design compromises were

required. Future designs such as the follow-on SX-5 from NEC, or for that matter any

SMP cluster type architecture, must strike the right balance between the number of

processors per node and providing a memory hierarchy that supports the highest possible

sustained execution rate within a node. Shared-memory tasking mechanisms tend to

quickly saturate within a node unless very large grain tasks are used. For small problem

sizes, a hybrid mix of sub-domain boundary exchanges using MPI combined with micro-

tasking in the vertical direction can be efficient. However, we have always found that

a distributed-memory model of computation for both inter and intra-node parallelism

yields the highest performance and the transition from single to multi-node is seamless

across the NEC IXS crossbar switch with no degradation in performance. Moreover,

the performance across nodes was better than on a single node and this may be due to

memory contention.

Since the scalar units on both the SX-4 and VPP 700 are 20 to 100 times slower than

the vector units, scalar code is to be avoided at all costs. With 2 Gbytes of SDRAM

available per PE and likely 8 Gbytes in the next generation machine, memory on the VPP

700 is not a major issue. The slower SDRAM may affect the sustainable floating-point

execution rate of some scientific codes. Both the SX-4 and VPPT00 processors have an

abundance of vector registers which the compiler can exploit to reduce memory traffic. We

have found in our benchmarks that the SX-4 processor performs slightly better on short

vector lengths than the VPP700. The performance of the VPP700 crossbar interconnect

for the IFS spectral model is now well documented, but also the particular communication

patterns of a grid point model (such as halo exchanges) are also well handled. The overall

performance of the IFS forecast model is slightly better on the VPP700 than the SX-4

(both single and multi-node) for the T213L31 benchmark as can be seen from Figure

1. However, the performance is very close and we believe that the gap could be bridged

with a modest tuning effort.

References

[1] S. Barros, D. Dent, L. Isaksen, G. Robinson, G. Mozdzynski and F. Wollenweber.

The IFS Model: A parallel production weather code. Parallel Computing, 21 (1995),

pp. 1621-1638.

[2] D. Dent and G. Mozdzynski. ECMWF operational forecasting on a distributed

memory platform: Forecast model. Proceedings of the Seventh ECMWF Workshop

on the Use of Parallel Processors in Meteorology. eds. G-R Hoffmann and N. Kreitz.

World Scientific, Singapore, 1997, pp. 36-51.

[3] R. Hempel, H. Ritzdorf, F. Zimmermann. Implementation of MPI on NEC's SX-4

multi-node architecture. Proceedings of the 4th European PVM-MPI User's Group

Meeting. 1997.

[4] J. L. Hennessy. Perspectives on the architecture of scalable multiprocessors: Recent

developments and prospects for the future. Presentation, Supercomputing 97, San

Jose, November 1997.

[5] R. D. Loft. A modular 3-D dynamical core testbed. Proceedings of the Seventh

ECMWF Workshop on the Use of Parallel Processors in Meteorology. eds. G-R

Hoffmann and N. Kreitz. World Scientific, Singapore, 1997, pp. 270-283.

[6] A. C. Sawdey and M. T. O'Keefe. A general programming model for developing

scalable ocean circulation applications. Proceedings of the Seventh ECMWF Work-

shop on the Use of Parallel Processors in Meteorology. eds. G-R Hoffmann and N.

Kreitz. World Scientific, Singapore, 1997, pp. 209-225.

[7] W. C. Skamarock, P. K. Smolarkiewicz and J. B. Klemp. Preconditioned conjugate-

residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev.,

125 (1997), pp. 587-599.

[8] S. J. Thomas, A. V. Malevsky, M. Desgagn_, R. Benoit, P. Pellerin and M. Valin.

Massively parallel implementation of the mesoscale compressible community model.

Parallel Computing, 23 (1997), 2143-2160.

[9] P. R. Woodward. Perspectives on supercomputing: Three decades of change. IEEE

Computer, 29 (1996), pp. 99-111. (special 50th anniversary issue).

7

sl PEs real user cp vector % vec par

y 1+1 80 78 155 99 97.5 73

y 2+2 71 52 203 129 97.0 65

y 4+4 42 29 227 140 96.5 36

y 12+4 28 16 255 150 96.0 18

Table 1: IFS T106L19 12 hr forecast timings (secs) on SX-4/32M cluster. SX-4/16, 4

GB MMU (yonaka) + SX-4/16, 8 GB MMU (asa). Semi-Lagrangian (y/n). Processing

Elements (PEs). Elapsed (real) time. CPU time (user). Total CPU time (cp). Total

vector time (vector). Vectorization ratio (% vec). Estimated parallel (par) time.

sl PEs real user cp vector %vec par

y 4 200 144 566 326 96.0 183

y 8 101 74 580 331 96.0 88

y 16 63 42 665 373 96.0 47

n 2 276 236 465 161 90.0 249

n 4 137 107 420 166 90.0 120

n 6+2 78 55 437 183 90.0 63

n 8 80 57 450 192 90.0 67

n 16 52 33 514 223 89.0 35

Table 2: IFS T213L31 12 hr forecast timings (secs) on SX-4/32, 8 GB MMU (hiru) and

SX-4/32M cluster. SX-4/16, 4 GB MMU (yonaka) + SX-4/16, 8 GB MMU (asa).

{D

O .__

L_

O

.±
"O E

CD

v

-..J _:

CO fE
cD

Cq u_ o

0.
_m

I'II
I

\

%

%

\

i _ i i i i i i i i

0
0
0

I i i r i

0
0

,_ep _ed s£ep _se0eJo_

Figure 1" IFS RAPS 4.0 T213L31 Benchmark. Semi-Lagrangian.

O
O
T=--

O

{D
LU
Q.

102

MC2 l Okm Forecast

I

>.,

Q,.
03

_'101
"0

03
¢1
o
G)
}--

0
/ /

/ /

/1

/ /

.//'/

/./

/,;,

100
100

j•

/"

/ i"

,I /

/' J
/

/

/

/ i-

./ /,

/ /

/

J

/

/

/

/
/

/ /

I"

/

/

/

/

/

/ I

/ j

.I

/

/

i i t I i I I i] i i i i i t i

101

PEs

1

10 2

Figure 2:MC2 Performance on SX-4M: Ideal versus observed.

10

IOO0
MC2 l Okm Forecast

I I i I I I

LU
(:).

Q

'a
Q..
0

m

950

900

85O

8OO

750

700

65O

600

550

f

/

500 , , I , , i
0 5 10 15 20 25 30

PEs

Figure 3:MC2 Performance on SX-4M: Single (bottom) versus multi-node (top).

11

12

Author: George Mozdzynski

European Center for Medium-Range Weather Forecasts
Shinfield Park

Reading, Berkshire RG2 9AX United Kingdom

George.Mozdzynski @ecmwf.int

Co-author(s): David Dent

Mats Hamrud

Lars Isaksen

Parallelization of the ECMWF Integrated Forecasting System

The Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF)

consists of a large suite of software used primarily to produce a daily 10 day forecast. Key components of the IFS

include the processing of observations, a 4 dimensional variational assimilation scheme, and a 10 day forecast

model integration using a - 60km grid.

In the past, the parallelization of the IFS has concentrated on the forecast model component, and today this
continues to show near ideal scaling on many of the parallel computer systems available today. This model has

recently been enhanced to support parallel I/O by using some new facilities provided in the MPI2 standard. Results
of scalability experiments using these MPI-IO facilities are compared with a parallel I/O package developed at
ECMWF.

The processing of observations is an integral part of meteorological data assimilation. The volume of such

observational data is growing rapidly with the availability of new satellite data, and requires parallel processing to

keep run times to an acceptable level. Observations are stored in a highly compressed BUFR format, which is the

WMO standard format for the interchange of observation data. The encoding and decoding of BUFR format files is

inherently scalar in nature and does not benefit from vectorization. To resolve this a new and more flexible

observational data format has been developed at ECMWF called Central Memory Array or CMA format. The

objective is to use CMA format where possible and to constrain the use of BUFR format to archive purposes. An

overview of how the IFS performs observation processing is described.

In the last year, ECMWF has introduced a new data assimilation system based on the 4D-Variational analysis

method. This method involves the use of adjoint and tangent linear forecast models, and minimization of global cost
functions based on observational information and background forecast field information. This method is

computationally intensive and requires parallel processing in order to meet time critical requirements. Further,

issues of load balance arise from the distribution and cost of processing observations. This paper presents an
overview of these issues and how they are resolved, together with performance data from the FUJITSU VPP700

system at ECMWF.

13

14

Coarse-grain Parallelization of the CCCma Atmospheric GCM

on a NEC SX-4

Bertrand Denis

Canadian Centre for Climate Modelling and Analysis

P.O. Box 1700

Victoria, BC

Canada

V8W 2Y2

bdenis@ec.gc.ca
tel: +1-250-363-8245

fax: +1-250-363-8247

Abstract

CCCma operates spectral atmospheric general circulation models on the super computer

system at the Canadian Meteorological Centre (CMC) in Dorval, Quebec. This system

includes a multi-node NEC SX-4 Symmetric Multiprocessor (SMP). The nodes are made

of vector-parallel platform with 4 to 8 GB of central memory and 16 to 32 CMOS-based

vector processors, each with a peak performance of 2 Gigaflops. Presently, the NEC SX-4

cluster at CMC has one 32-processor node (SX-4/32) and two 16-processor nodes (SX-4/

16).

An older version of the model (GCM2) is used in CCCma's coupled climate model, which

includes atmosphere, ocean and dynamical sea-ice components. GCM2 operates at "T32"

resolution in the horizontal and has 10 levels in the vertical. A newer version (GCM3)

operates at T47 or T63 resolution in the horizontal and has 32 levels in the vertical. GCM3

enjoys a number of improvements over GCM2, including a double transform methodol-

ogy, optimal topography to reduce Gibbsian ripples, a new deep convection scheme,

improved radiation code, a new land surface scheme (CLASS) and optionally, a semi-

Lagrangian treatment of tracers.

We will describe how we have parallelized GCM2 and GCM3 and will report on how we

took advantage of the existing code design to get satisfactory performance with the least

effort in the context of a coarse grain parallelization on an SMP machine. Diverse strate-

gies concerning the domain decomposition, memory allocation, spectral transform, load

balance, and synchronizations will be presented.

15

1 Introduction

One of the major roles of the CCCma is to help Canadian policy-makers by providing sci-

entifically-based climate simulations (Boer et al.[1], see also the CCCma web site for

more information on the centre: http://www.cccma.bc.ec.gc.ca). To pursue this success-

fully, the main component of the coupled climate model, namely the Atmospheric General

Circulation Model (AGCM) has been improved constantly since it was originally devel-

oped 20 years ago.

The insatiable need for higher spatial and time resolution, and the increasing complexity

of the physical processes represented in the model have continuously pushed the demand

for more computing power. To cope with that, the model code architecture has had to be

optimized many times in the past. For instance, in the early years of development, main

memory was a scarce resource so strategies such as domain decomposition, which allowed

partial processing of the computational grid in memory, were adopted. Later, with the

acquisition of a vector machine (CRAY-1) the model code had to be vectorized and the

vector lengths became another constraint to achieve high performance. Nowadays, the

availability of a Symmetric Multiprocessor machine (NEC SX-4) calls for code parallel-

ization to meet a realistic turnaround time for the next generation of climate simulations.

When planning climate simulations for production mode, some factors need to be payed
attention to and dealt with such as:

• The available computer resources consisting of, cpu time, central memory, disk mem-

ory and archival storage space.

Spatial and time resolutions at which the simulation is performed. Larger grid point

density and the smaller timestep (i.e. more frequent computations) theoretically lead to

better results.

• Deadlines for submitting simulated data, for example, to meet international commit-
ments.

• Length of the coupled model simulation(s), typically 200 years or more.

At CCCma, we aim for fully coupled simulations that can be produced in 3 months. Simu-

lations typically cover 2 centuries. This requires roughly 2 years of simulation per real day

or 2 months/real hour. For coupled simulations, the work includes the AGCM, the Ocean

General Circulation Model (OGCM), the coupling mechanism and data dumping to a

mass storage system. The extensive I/O bound diagnostics of the generated climate data

are performed concurrently on the front-end (SGI Origin 2000) server.

16

Thefirst Canadianfully coupledmodel(Flatoet al.[2]) usesthesecondgenerationAGCM
known asGCM2 (seeMcFarlaneet al. [3]). The secondfully coupledmodel will usea
new AGCM calledGCM3. As with GCM2, GCM3 is aspectralmodelbut its horizontal
resolutionhasbeenupgradedfrom T32 to T47 (optionallyT63). In thevertical,thenum-
ber of levelshasbeenincreasedfrom 10to 32.Besidesits higher resolutionit enjoysa
numberof improvementsoverGCM2,includingadoubletransformmethodology,optimal
topography(Holzer [4]), a new deepconvectionscheme(Zangand McFarlane[5]), an
improved radiationcode,a new land surfacescheme(CLASS) and optionally, a semi-
Lagrangiantreatmentof tracers.

Theseimprovementscomeat acost:

GCM2 T32
GCM3 T47

cputime/simulatedday
.............................

30 sec

186 sec

For serial code on a single processor these numbers are close to the wallclock time. To

meet the turnaround requirement for long climate simulations, GCM3 had to be parallel-

ized to make use of the full potential of the computing system at the Canadian Meteoro-

logical Centre (CMC) in Dorval, Quebec on which production runs are performed. This

system includes a multi-node NEC SX-4 Symmetric Multiprocessor (SMP). The nodes are

made of vector-parallel platform with 4 to 8 GB of central memory and 16 to 32 CMOS-

based vector processors, each with a peak performance of 2 Gigaflops. At the present

stage of the parallelization development reported here, only a maximum of 16 processors

of a single 32-processor node (NEC-SX/32) has been used.

2 Implementation strategies

It was decided to use the NEC multi-tasking capabilities [6] to implement parallelism in

the code. We chose GCM2 to start with because it was the production model at that time

and any speedup would have been immediately beneficial. Also, the GCM2 code design

was much simpler than the developmental model GCM3. The CCCma AGCMs are typi-

cal Eulerian spectral models. However, even though we call them spectral models, more

than 97% of the work is done in the physical domain, i.e. on a grid. The advantage of the

spectral methodology is that horizontal derivatives are computed exactly in spectral space,

leaving the computations column-independent on the dynamics grid and avoiding the need

for communication between columns. The physics computations are also done in a col-

umn-independent manner. Therefore, it was obvious to parallelize first on the computation

grids, and then if needed on the remaining 3% which includes the linear spectral computa-

tions, I/O, time filtering, etc..

The task of paraUelization of a model that has evolved over 20 years without major re-

writing was not trivial at first. Fortunately, because early programmers had designed clever

17

codingstrategiesto dealwith very limited centralmemory,partsof themodelcodewere
alreadyin anideal statefor parallelization.Onethesestrategieswasto usea latitudeloop
to processonelatitudeat atimeinsteadof loadingandcomputingthefull grid all at once.
This methodologyis alsocalledmemorywindow management.Theobviousthing to do
first wasto take advantageof this memorywindow managementfor the distribution of
workamongtheprocessorelements(PE).

Oncewe decidedthat coarse-grainparallelizationcould be easily implementedin the
existingcode(which alreadyhaddomaindecompositionbuilt-in),weanalyzedthecodeto
locatewheresynchronizationhadto be imposedto getreproducibilityfor anynumberof
PEsgivenadomaindecomposition.Wefound2 placesthatneededattention,bothhaving
to dowith global summations.Thefirst oneinvolvedthetotalprecipitablewaterandthe
total traceramount.Thesecondwasin the lastoperationof theLegendretransformfrom
grid to spectralspace.Weshallspecificallystressthis lastpointin thenextsection.

Oneof thetargetswe focusedonwhenwebegantheimplementationwasto getbit-by-bit
reproducibilitybetweenthe originalcodeandtherevisedone.The researcherswerenot
willing to continueongoingruns with a multi-taskedmodelwhich would not give the
sameanswer.Furthermore,a multi-taskedversionwhich would give the exact same
answerwould be the proof that the programmerhad not introducedflaws. Researchers
weremorewilling to acceptdifferentanswersfor the nextfrozenversion(GCM3) if that
allowedfor a betterspeedup.Theyjust askedthatthemulti-taskedGCM3 yield thesame
climatefrom a statisticalpoint of view comparedto theoriginalversion.To getreproduc-
ibility, it was importantto identify the memoryspace(COMMON blocks)that mustbe
privateto eachtasksotheydonotoverwriteeachother.

GCM2

The GCM2 was frozen in 1992, but a major optimization to increase the vector lengths for

better efficiency has been implemented since. This was done by chaining alternating north

and south hemispheric latitudes and made use of symmetrical properties to speedup the

Legendre transform. A benefit of this north-south coupling from a multi-tasking point of

view is that it provides a first order load balance among the chained latitude sets. In effect,

this mixing of latitudes from both hemispheres gives chunks of work which contain physi-

cal processes from various parts of the globe. Another advantage of this latitude chaining

mechanism is the possibility of getting an exact multiple of the optimum vector length for

the NEC-SX4 vector registers which hold 256 eight-byte elements. Figure 1 shows the

domain for a 96x48 grid points decomposed in 12 subdomains for 6 PEs.

Figure 2 shows the so-called latitude loop for the original (sequential) GCM2. If using the

domain decomposition of Figure 1, the iteration is done sequentially 6 times and just 1/6

of the grid is needed in memory. Figure 3 shows how the concurrency can take place in

18

that loop which, assaidpreviously,representsmorethan97% of total cpu time. Essen-
tially everythingis donein parallelwith onemajorexceptionbeingtheGaussianquadra-
ture in theforwardLegendretransform.Fortunatelythisstepis oneof the lastonesof the
forward spectraltransformand explicit synchronizationusingNEC multi-tasking func-
tionscanbeusedto maintaintheorderof thesummationof theLegendretransform.The
badsideeffectof this imposedorderis animplicit sequentialsectionin thecomputational
flow. Themanagementof thememoryfor GCM2washandledby usingNEC f77sxcom-
piler directives(*PDIR TASKLOCAL(/xxx/) onCOMMON blocks.Thesewereeasyto
implementoncethelocality vs.theglobaiityof thedatawasdetermined.

Concerningtheissueof giving theexactbit-by-bit sameanswerfor theGCM2 version,we
first re-compiledwith the multi-taskingswitchturnedon butwithout anychangesin the
code.To ourbig surprisetheanswerwasnot thesame.It appearedthatthecodeoptimiza-
tion of oneexpressionwasnotdoneanymoreandthusaonebit differenceshowedupafter
60 timesteps.Wefinally pinpointedtheproblemandoptimizedthecodeby hand.Thenthe
sameanswerwasobtainedandweweresetto startthemulti-taskingimplementation.

GCM3

Apart from its improved physics and higher resolution, the GCM3 computational flow is

fundamentally different from GCM2. The new GCM3 make uses of a process-splitting

marching scheme where the physics is applied as a correction to the updated dynamical

variables at each timestep. In GCM2, the total tendency terms were made of the non-linear

dynamics terms added to the physics tendencies lagged by one timestep. Moreover, these

physics and the non-linear dynamics tendencies were computed on the same grid. With

GCM3, they are performed on different grids having different sizes. This is what we call

the double transform. The consequence for the implementation of the parallelization is

that, 2 latitude loops instead of 1 must be parallelized, each having a potentially different

domain decomposition (Fig. 4).

The explicit synchronization in GCM2 for the Legendre transform was removed by pro-

viding the tasks private memory space to put their contributions to the global spectral

fields, the final summation now being done after each parallel latitude loop. Again here,

the clever implementation of the latitude loop many years ago helps to implement that

algorithm. In effect, the forward Legendre transform was designed to be executed almost

totally within a latitude set without elements needed from the other latitudes on the trans-

form grid. The individual contributions are only required for the final summation. This

was done incrementally as each latitude set is processed in the latitude loop. In other

words, using this method, no transpose is needed in the Fourier domain. Mathematically

the forward spectral transform is written as,

NLAT NLON- 1

m m { 1 -ImPLy}An = E W(l'tj)Pn(l'tj)NLON E A(ki'l'tj)e

j=l i=O

(1)

19

m

Where A(_,i, p.j) are the grid point values, Pn (_j) is the (normalized) associated Leg-

endre function and W(_j) are the Gaussian weights, and i andj are the longitude and lat-

itude indices respectively. NLON is the total number of longitudes and NLAT the total

number of longitudes•

The transform is usually performed in 2 steps

1-Forward Fourier transform: (grid->Fourier coef)

NLON- 1

1 -Im_,i

Am(l'tj) = NLON _-J A(_'i'_tj)e (2)

i=0

2-Forward Legendre transform: (Fourier coef-> spectral coef)

NLA T

A m _._ m mn = W(_j)P n (_j)A (_tj) (3)

j=l

m o

This can be re-written with partial sums S n (J)

NLA T

m

An = E m .• S n (j) (4)

j=l

NLON- 1
m . 1 -Im_'i

where: Sn (J) - NLON _ W(_j)P:(I'tj)A(_'i'_J)e (5)

i=0

The advantage of this is that each PE can work independently on its own latitude circle to
m .

fill up its own spectral triangle S n (J).

When working on a set of chained latitude circles like in Fig. 1, (4) and (5) become:

NSET

m

Sn(k) =

m m

At, = _ S n (k)

k=l

NLON- 1

E{1 NLON

j _ set(k) i - 0

(6)

m -Im ki)

W(I.tj)P n (_j)A(_, i, l.tj)e _ (7)

20

rn

Where S n (k) represents the partial sum for a given set k. When running in parallel, each

PE is associated with a given k and evaluates (7) independently. The final summation of

each contribution is done serially after the parallel loop.

This method is described in Worley and Drake [7,8] as too expensive in terms of memory,

because of the duplication of the spectral arrays, and in terms of communication time on a

distributed memory machine. We found that for a shared memory machine like the NEC-

SX4 and with the use of dynamic memory allocation these arguments fade away. See also

[9] and [1O] for more information on parallel algorithm for spectral transform.

With the double transform, the first parallel section of the code, namely the non-linear

dynamics, induced no load imbalance. On the other hand, the physics can still produce a

load imbalance especially between the PE working at the equator and the one working at

the poles since very different physical processes take place in these regions, e.g. convec-
tion.

Having now no explicit synchronization in the latitude loop and because much more work

is done in the more expensive GCM3 physics, 98.5% of the total work in this version can

potentially be executed in parallel. But because of some physics load imbalance and

because some serial time is needed at the beginning of each latitude loop to obtain the PEs

and to get them working on their task, the effective amount of work done in parallel is

about 97% for T47 when using 6 PEs.

For GCM3, we still use the compiler directives (*PDIR TASKLOCAL(/xxx/)) for local

common blocks but we moved to dynamic memory allocation using integer pointers for

the biggest work arrays. Tests were done showing that the replacement of the compiler

directives by the use of dynamic memory allocation yielded up to 25% more speedup. In

addition, when the tasks were generated for a given latitude loop, the memory for all

declared tasklocal commons in the code was allocated on the stack, not just the memory

used in that latitude loop.

3 Performance results

All performance tests were done on the operational node which is used not only for model

development and climate production runs, but also by the Canadian Meteorological Centre

(CMC) for weather forecast production. This node has 32 PEs available. Considering the

other users on the machine and the fact that we had climate production runs, 6 to 16 PEs

were used. The results are for one model simulated month.

21

GCM2

For GCM2, the spectral truncation is T32, the physics/dynamics grid is 96x48, the number

of vertical levels is 10 and the timestep is 20 minutes. Table 1 gives a summary of the per-

formance as a function of the number of PEs. A speedup of 4.2 is obtained with 6 PEs.

GCM3

For GCM3 two sets of tests are shown. The first is at T47 with physics grid of 96x48 and

dynamics grid of 144x72. The second is at T63 with a physics grid of 128x64 and a

dynamics grid of 192x96. The timesteps are respectively 20 and 15 minutes. Both have 32

vertical levels. Tables 2 and 3 summarize performance for these 2 resolutions. At T47 and

with 6 PEs, the execution time is 18 minutes which represents a speedup or 5.2. At T63

and with 16 PEs, the execution time is 22 minutes and the speedup 10.2.

In the above tests, the shortwave (sw) radiation computations were done every hour. When

they were done at each timestep, the T47-6 PEs version ran at 4 Gflops taking 26 minutes

per month and the T63-16 PEs version ran at 8.5 Gflops taking 27.7 minutes per month.

Considering that the climate with the sw computed at each hour is very similar to the one

computed at each timestep, it has been decided to go with the less expensive alternative,

i.e., once an hour.

Conclusion

Substantial speedups have been achieved without rewriting the entire AGCM code. This

will help us to perform our long term climate simulations within the existing constraints
described in the introduction. In effect, the wallclock time for GCM3 T47 decreases from

186 sec/day to 36 sec/day using 6 PEs. With this performance, the goal of 2 simulated

months per hour is easily met. At T63, 16 PEs, the same time target is also met. However,

in a coupled mode, the OGCM also requires a substantial computational effort. We are

about to start multi-tasking the OGCM code and are developing a flux coupler using MPI

communication capabilities.

Speedups shown in table 2 and table 3 do not scale very well for a relatively large number

of PEs. Considering that a single node SX4 has a maximum of 32 PEs and that we usually

run at least 2 concurrent production runs on it, this kind of scalability is acceptable. Any-

way, a speedup of 10 for GCM3 at T63 is something that makes model users very happy!

Acknowledgement

The author would like to thanks Fouad Majaess for the long hours of discussion on the

project. Special thanks too to the CCCma AGCM model manager, Mike Lazare. Also

many thanks to my CCCma colleagues who provided me precious comments and helps.

22

NP

EQ

Fig. 1. Domain decomposition of a 96x48 grid for 6 processor elements (PE-1 to

PE-6). Each PE shares part of each hemisphere. Each PE performs computations on

vectors having optimum multiple length of 256 elements. This is done by chaining

alternatively north and south a total of 8 latitude circles of 96 grid points each.

SP

Do loop sequentially for each latitude set.

V

I SPEC -> GRID (LAT)

PHYSICS
DYNAMICS

I

IaRID(LAT ->SPEC
I

_TRAL (GLOB__

I

Fig. 2. Original so-called latitude loop for GCM2. The time goes downward begin-

ning with the inverse spectral transform at the top. The forward transform is at the

bottom. One latitude set is processed at a time. For the typical 96x48 grid with 8

chained latitudes, the sequence is repeated 6 times.

23

PHYSICS PHYSICS PHYSICS PHYSICS

DYNAMICS DYNAMICS DYNAMICS DYNAMICS

I
PHYSICS

DYNAMICS

I
PHYSICS

DYNAMICS

SPECTRAL (GLOBAL)

Fig. 3. As in Fig. 2 but with 6 PEs working concurrently on their own latitude set. The

heavy line, where the arrows converge, represents the area where explicit synchronization

is imposed. Note also that, for GCM2 considered here, the physics and non-linear dyna-

mics are done on the same grid.

24

ECTRAL (GLOBAL) '

I SPEC->GRIDI I SPEC->GRIDI I SPEC->GRID]

I I I
DYNAMICS DYNAMICS DYNAMICS

I I I
I GRID->SPECI [GRID->SPECI

<_ SPECTRAL (GLOBAL) _

IsPEc->GR_I
I

DYNAMICS

I
I GRID->SPECI I GRID->SPECI

__..____SPECTRAL (GLOBAL) _

I SPEC->GRIDIISPEC->GRgO[I SPEC->GRIDI I SPEC->GgIDI I SPEC->GRIDI IsPEc->_g_l
I I I I i

PHYSICS PHYSICS PHYSICS PHYSICS PHYSICS PHYSICS

I I I I I I
ICnD->SPECIICRID->SPECIICRID->SPECIICRID'>SPECIICgID->SPECIICPaD->SPECl

<_ SPECTRAL (GLOBAL) --_

Fig. 4 Computational flow for a GCM3 timestep showing the 2 parallel latitude loops.

The first one is for the non-linear dynamics and the second for the physics. SPEC(#) indi-

cates private spectral arrays. This diagram is for 4 PEs on the dynamics grid and 6 PEs

on the physics grid.The final summations are done after each corresponding latitude loop

so that no explicit synchronization is done inside the parallel latitude loops.

25

Table 1: Performance for GCM2 T32

P

1

2

3

6

Mem

(mb)

50

68

83

128

Exec

Time

(min)

15.3

8.5

6.0

3.7

CPU

Time

(min)

15

15.5

15.7

16

Gflops

(total)

0.530

0.955

1.341

2.215

Mflops

(avg/

proc)

530

478

447

369

Speedup

1.8

2.5

4.2

Efficiency

90%

84%

70%

Table 2: Performance for GCM3 T47

PE

1

2

3

6

Mem

(mb)

180

322

488

833

Exec

Time

(min)

93

49

34

18

CPU

Time

(min)

93

94

95

96

Gflops

(total)

0.71

1.35

1.95

3.62

Mflops

(avg/

proc)

710

706

702

693

Speedup

1.9

2.8

5.2

Efficiency

95%

93%

86%

Table 3: Performance for GCM3 T63

PE

1

4

8

16

Mflops
Exec CPU Gflops (avg/ Speedup Efficiency

Mem Time Time (total)
(mb) (min) (min) proe)

168 224 224 0.66 660 1

441 63 229 2.24 560 3.5 89%

830 35 234 4.21 525 6.4 80%

1490 22 238 6.68 417 10.2 63%

26

References

[1] Boer, GJ, McFarlane NA, Lazare M, "Greenhouse gas-induced climate change simu-

lated with the CCC second-generation general circulation model". J. Climate, 5,

1045-1077, 1992.

[2] Flato, G.M., G.J. Boer, W.G. Lee, N.A. McFarlane, D. Ramsden, M.C. Reader, and

A.J. Weaver. "The Canadian Centre for Climate Modeling and Analysis Global

Coupled Model and its Climate". in manuscript, 1998.

[3] McFarlane NA, Boer GJ, Blanchet J-P, Lazare M, "The Canadian Climate Centre sec-

ond generation circulation model and its equilibrium climate". J. Climate, 5, 1013-

1044,1992.

[4] Holzer, M., "Optimal spectral topography and its effect on model climate", J. Climate,

9, 2443-2463,1996.

[5] Zhang, G.J., and N.A. McFarlane, "Sensitivity of climate simulations to the parameter-

ization of cumulus convection in the CCC GCM, Atmosphere-Ocean, 33, 4097-

446, 1995.

[6] NEC, "SUPER-UX FORTRAN77/SX Multitasking User's Guide", release 7.2 (1997).

[7] Worley H.P. and J.B. Drake, "Parallelizing the Spectral Transform Method", Concur-

rency: Practice and Experience, Vol.4, p. 270-291, 1992.

[8] Worley H.P. and J.B. Drake., "Parallelizing the Spectral Transform Method. Part Ir',

Concurrency: Practice and Experience, Vol.7 p. 509-531, 1992.

[9] Foster, I.T. and P.H. Worley, "Parallel Algorithms For Spectral Transform Method",

Tech. Report ORNL/TM-12507, OakRidge National Laboratory, 1994.

[10] Foster, I.T., B. Toonen and P.H. Worley, "Performance of Parallel Computers For

Spectral Atmospheric Models, Tech. Report ORNL/TM-12986, OakRidge

National Laboratory, 1995.

27

28

KEY ELEMENTS OF THE USER-FRIENDLY, GFDL SKYHI

GENERAL CIRCULATION MODEL

Richard S. Hemler

Geophysical Fluid Dynamics Laboratory/NOAA
P.O. Box 308

Princeton University

Princeton, New Jersey 08542

e-mail: rsh@gfdl.gov
tel: +1 609 452-6598

fax: +1 609 987-5063

29

1. Introduction

SKYI-II is a grid-point atmospheric general circulation model which was developed at the

NOAA Geophysical Fluid Dynamics Laboratory nearly twenty years ago (Fels et al.

[1]).The model is global, and extends in the vertical from the ground to about 80 km.

SKYHI has been used to investigate various troposheric, stratospheric and mesospheric

phenomena, including sudden stratospheric warmings, the quasi-biennial oscillation,

ozone depletion, gravity wave-mean flow interactions and chemical and tracer transport

problems. A concise description of the model equations, numerics and physics may be
found in Jones et al. [2]; a more detailed description is found in Hamilton et aI. [3].

Jones et al. [2] describe changes made to the model in order to port it to the Thinking

Machines Corporation CM-5 machine at Los Alamos National Laboratory. This paper

concentrates on changes made to the model that significantly enhance the ability of the

SKYHI user to quickly and easily modify the model code to initiate, run and analyze new

scientific experiments, and to attach new features to the model with a minimum of diffi-

culty. Section 2 discusses the development of the generic SKYHI code in which the effi-
cient use of human resources is balanced with the efficient use of machine resources.

Section 3 defines the basic structure of SKYHI and the current meaning of "modularity"

as used by SKYHI. In section 4, two of the important new user-friendly "modules" of

SKYHI are presented, along with examples of their use. Section 5 discusses the parallel

performance and scaling of SKYHI on CRAY PVP shared memory and CRAY T3E dis-

tributed memory machines, while Section 6 serves as a summary.

2. Balanced optimization

The SKYHI model code that existed in 1990 was the result of many people's efforts over

many years and several machines to produce a code which would run using a minimum

amount of CP time, memory and I/O time. As a result, the relationship between the model

code and the analytical expressions it represents was difficult to see; model variables were

often defined to minimize arithmetic operations, rather than to be physically- or numeri-

cally-meaningful quantities. Memory usage was minimized by implicit and explicit equiv-

alencing; certain common blocks were used to provide the current functionality of the

stack. Specific coding practices needed for performance on previous platforms were still

in place, even though they were no longer needed. The result was a model which could be

run with scientifically-meaningful horizontal resolution on a machine with limited central

memory, but which was difficult to modify and often failed in unexpected ways when dis-

turbed, and in which code for specific model processes was scattered across many subrou-

tines.

At the same time, the shrinking budget for basic research and the desire to reduce the Fed-

30

eral work.forcewasshrinkingthenumberof GFDL programmersandscientistsavailable
to managethe codeandto run scientificexperiments.To takeup the slack,morevisiting
scientistswere being invited to GFDL, usually for periodsof a few years.In order for
thesepeopleto makeproductiveuseof their time at GFDL, it was essentialthat they
quickly becomeableto usethemodelin their studies,andnotspendalot of time attempt-
ing to attachtheir experimentto SKYHI. Theexistingcodestructureof SKYHI madethis
processdifficult.

With the coming of the CRI YMP machinein 1990, the available computing power at

GFDL increased significantly. This allowed the "machine de-optimization" and "user opti-

mization" of the SKYI-II code to begiia, without resulting in a reduction in model through-

put for the SKYHI user community. Code constructs which may have been machine

efficient at some point in the past but which were difficult for users to understand and

modify correctly were replaced with more easily understood code, the first step toward

balanced optimization.

Balanced optimization attempts to optimize not only the use of machine resources, but

also the human resources required in scientific investigations. Fig. 1 is a schematic repre-

sentation of some of the important factors that must be considered in a research code

designed to be used by a variety of users. The ideal code would be optimal in all of these

user and machine resource utilizations; since no real code is ideal, it is desirable to pro-

duce a code in which none of these features is out-of-balance with the others. Typically

these features compete with each other; for example, a code which is highly 1/0 efficient

is likely to be less memory efficient than it could be if the I/O were not so efficient. The

strategy then is to produce a generic production code in which there exists a balance
between these features.

This generic code is the form that is maintained and made available to users. It is written

so that it allows easy access to the model to a broad spectrum of users with diverse

research interests, each of whom may wish to view different parts of the model as a black

box, and who may not need or want all of the features that are provided. Individual users

then optimize the generic code as they must in order to reach their scientific goals.

3. The structure of SKYHI and modularity

Figure 2 shows the four basic sections of the SKYHI model. The model's initialization

phase consists of calling subroutines to set up tables, initialize constants, read input data

-- all the things that are only done once during a model run. After completion, the time-

step loop is entered. Some of the calculations in this loop are not a function of gridpoint,

but only a function of the time or timestep. This is called the time-dependent phase. After

it is executed, the chunk loop is entered. This loop extends over the model domain, which

31

is broken up into rectangularportions in the horizontal,referredto as chunks.These
chunksmaybeexecutedeithersequentiallyor in parallel.Within this prognosticsection
the modelequationsare time-integrated,contributionsfrom the chunkto any integrands
beingcalculatedarecomputed,andanydatafrom thechunkwhich areneededin archive
filesarewritten.After thedomainchunksareprocessed,theprocessingof global integrals

I Human IFactors Factors

Resource Utilization

Figure 1. A schematic representation of the human and machine factors which
must be considered in balanced optimization.

32

is donein thediagnosticcodesectionto completethetimestep.

Part of the ongoing effort to makeSKYHI moreuser-friendlyis the separationof the
sourcecodeinto "model" codeandanumberof modules.In SKYHI atthis time,amodule
is definedsimplyascodeneededto performaspecificmodelfunctionwhichhasbeeniso-
latedfrom therestof thesource.Thatpartof thecodenotyetcontainedwithin amoduleis
referredto asthe "model". Thefollowing guidelinesmustbemet for aportionof codeto
becalledamodulein SKYHI:

1) No "model" includefiles,commonblocksor subroutinesmayappearin anymodule.
2) No moduleincludefiles,commonblocksor subroutinesmayappearin the "model".
3) All communicationbetween"model" andamodulemustbethroughargumentlists.
4) Moduleto modulecommunicationmustoccurby goingthroughthe"model".
5) Modulesmayhaveaninterfaceto the"model" in eachmodelsectiondefinedabove.

Theseconditionsassurethat thecommunicationbetweenmodelandmoduleis explicitly
defined,via asubroutinecall argumentlist. It makesit obviousto auserwhatmodelvari-
ablesmustbesuppliedto themodule,andpreventsthe inadvertentmodificationof model
variablesthat could bebroughtinto a modulevia a modelincludefile or commonblock.
Experiencehasindicatedthatmanyargumentlistsmaybeshortenedby somecodereorga-
nization,whichalsoinvariablyproducesamoreunderstandableandmoremodularcode.

At themoment,SKYHI containsseveralphysicsmodulesthatfollow thesecodingguide-
lines.Theseinclude a radiationpackage,a cloudpackage,a surfacealbedopackage,an
astronomypackageand anozonepackage.Thesemoduleshavebeencarvedout of the
previousSKYHI radiationcodeby isolatingthecodewhich is relatedto theseprocesses.
A modularstructureallowseasyimplementationof alternativeparameterizationsandalso
allows the output from thesemodulesto be passedbackto the modeland thenusedas
input to otherparameterizations,e.g.,thestratosphericchemistrypackageassociatedwith
SKYHI requiresastronomypackageoutput. More processeswill be pulled out of the
"model" andmadeinto "modules"astimepermits.

Severalmoduleshavebeenaddedto SKYI-IIrecently,following thecodingguidelinespre-
sentedabove.Theseaddedmodulesincludetwooptionaltracertransportpackages(advec-
tion plus subgrid-scalediffusion)anda particletrajectorypackage.An interfacefor each
modulewascreatedin eachof the four model sections(initialization, time-dependent,
prognostic,diagnostic),andthepackagecodewhich shouldbe executedin eachmodel
sectionis accessedthroughthis interface.As time allows,themodulesin SKYHI will be
madecompliantwith the Fortran90 moduleconstruct,further increasingthe easewith
whichnewFortran90codewrittenby othersmaybe incorporatedinto SKYHI.

33

Time

Step

Loop

Chunk

Loop

I Initializationphase [

Time-dependentcalculations [

PrognosticCode

Diagnostic Code

Figure 2. The basic structure of the SKYHI model.

4. The archiving module and the user variable module

Two new higher-level modules have been created in SKYHI. These modules handle two

functions which are essential for users who must significantly alter the existing code for

their experiments. Both of these features help to isolate the user's code from the SKYHI

model code and so reduce the chances of the user inadvertently modifying the model code.

a) The archiving module

The archiving module controls the writing of data files that will be analyzed offline. Five

file types are currently recognized: restart, point data, column data, slab data and reduced

data. A restart file is written at the end of a job, and must contain the time-dependent vari-

able fields and any other data that are necessary to allow the model to be started again at a

34

later time, asthoughit hadneverbeenhalted.Pointdata,columndataand slabdatafiles
containthe desiredmodel variablesat a specifiedsetof individual grid points, grid col-
umns or grid planes,respectively.In the limit, the slab datafiles will cover the entire
modeldomain.Reduceddatafiles containnon-griddeddata;they may containintegrals
overtheglobeor someportionof it, or anyothergrid-independentdataset.

All of these files (with the exception of the restart file) may capture either a "snapshot" of

the data or may be used to contain some type of time-averaged representation of the data.

Standard forms for each of the five file types are provided with the model code as a tem-

plate to be used in creating customized files. Three standard forms are provided for each

file type: the form for the standard version of the file; the form which will produce a time-

averaged standard version of the file, and a form which may be customized by the user to

provide whatever set of variables is desired, either as a snapshot or as a time-average.

User control of the archive files is provided through a combination of pre-processor

options, namelist variables and model parameters. Pre-processor variables define how

many file forms of each file type are present in the code. If the user adds code for a new

file form, then the variable for that file type would be increased from the default value. If

the model is to be integrated without writing any files of a given type, then the variable for

that type is set to zero, and all the code and storage associated with the data files of that

type will be removed from the model source.

If any data files for a given file form are to be written, then the user must specify namelist

variables that define the temporal characteristics for each of the file forms of that file type.

These variables and their use are described in Appendix A.

Data for each of the file forms of the grid-dependent file types is collected in an array

dimensioned by (i, j, n) where i andj refer to the horizontal grid points in x and y respec-

tively, and n is the sum over all variables of the number of k levels at which each variable

is to be written. The beginning and ending spatial location indices of these arrays and the

value of n for a given file form are specified as parameters in the model code.

Appendix B defines the recommended procedure for a user to follow when using the

archiving module.This procedure has been successfully followed by SKYHI users. The

naming conventions and supplied code allow even an inexperienced user to successfully

create new archive file forms by making it evident what code changes must be made to the

default code to create a new file form. Equivalent variables for different file types have

names which differ only by the unique letter associated with that file type. Equivalent vari-

ables for different file forms of a given file type have names which differ only by the file

form number, which is (are) the last digit(s) in the variable name. For example, the param-

eter defining the record length of the data record is ItRECLENa where t is the file type (r,

35

t, s, h, or i) anda is the file form number. Thus the variable names are very recognizable,

and contain the file type and file form information within them. The creation of control

code for new file forms simply requires the duplication of existing supplied code, the loca-

tion of the file-form-specific variable names, all of which contain the file form number,

and the replacement of the old file form number with the new in these variable names.

The archiving package has also been incorporated into the GFDL Limited-Area Non-

hydrostatic model (LAN) without difficulty, and should be insertable into any atmospheric

model which has the proper interfaces. New and useful Fortran 90 constructs will soon be

incorporated into the package and any problems or lack of clarity reported by users will

continue to be addressed. Additional capabilities are also planned, including the ability to

create time-averaged files that span jobs.

b) The user variable module

The user variable module allows the user to easily add variables to the model. The model

contains an array ooo (ist:iend, jst:jend, kst:kend, n, m), where the first three dimensions

are the (i,j,k) spatial indices, n is the number of ooo variables, and m is the time level

index, indicating lag, mid or lead time. This variable is available to the user to contain n

variables of his choosing. If no user supplied variables are desired, then a preprocessor

option is set, and all the code and storage associated with this variable is removed from the

code. When user-defined variables are desired, model-supplied code will handle all

aspects of their integration except for the calculation of the specific physics-chemistry-

source-sink terms relevant to the variable in question, which obviously must be supplied

by the user.

These user variables may be fully prognostic, semi-prognostic, or diagnostic. Fully prog-

nostic variables have a time tendency resulting from transport and may also contain phys-

ics-chemistry-source-sink terms. The transport is handled by the model, as specified by

the user from a series of options that are offered; there is no need for the user to provide

code to transport these variables, unless a scheme is desired that is not offered by the

model. Semi-prognostic variables have a time tendency resulting from source / sink terms,

but are not transported. Diagnostic variables are defined on the basis of other conditions,

and do not have an explicit time tendency equation. These variables may be integrated

with a timestep either smaller or larger than the model timestep, if desired.

The user must customize the general user variables so that they become the variables that

are desired. The model contains the chemical species nitrous oxide as a sample ooo vari-

able, the treatment of which the user can follow for his own variables. Interfaces between

the model and user variable module are provided in each model section; the user must

determine the variables that will become the argument list between model and module.

36

Different typesof variableshavebeencoupledwith SKYHI usingtheuservariablecode
block. The experiencegainedin couplingthesediversetypesof variablesto SKYHI has
produceda moregeneralstructureof theuservariableblock, sothat all of thesevariable
types,eachwith their own specialrequirements,may behandledproperly.Theresult is a
more robustmodule,onethat is morelikely to beableto handlethenext setof variables
thrownat it thanit waspreviously.

Severaldifferentuseshavebeenmadeof theuservariables in a chemistry context. The

investigation of tracer transport by different transport schemes has been done very neatly

by setting up an experiment with several initially identical copies of a given species, each

of which is integrated with a different transport scheme, all within the same model run.

The data for all the schemes are then present in the same data files, simplifying the analy-

sis effort. A stratospheric chemistry package with thirty-seven chemical species has been

attached to SKYHI and run without difficulty. In this case, some variables are prognostic,

some semi-prognostic, some diagnostic, and some may be prognostic or diagnostic,

dependent on the time of day. The option to have variables change between prognostic and

diagnostic was not originally present and required a generalization to the original code,

which was successfully done.

Experiments that have investigated the vertical diffusion scheme in SKYHI have

employed a simple radon tracer with a surface source. Multiple versions of the diffusion

scheme may be tested in the same job by starting multiple identical copies of the tracer,
each as a different user tracer variable which has a different diffusion scheme. In such a

case the model needs to be run only once in order to compare n different diffusion formu-

lations, rather than n times.

Another use of the user variables has been with a cloud ice parameterization scheme. Here

there was a need for twenty-three diagnostic variables, and the presence of the user vari-

able block allowed the easy inclusion of that many new variables. It is anticipated that

cloud microphysics and atmospheric aerosols may soon be examined in SKYHI and it is

likely that both of these variable sets will be handled within the user variable block.

The user variable module will also provide the flexibility needed to handle alternative col-

umn physics packages that are available as options within the model. Different parameter-

izations of a given process will require different variables to be communicated between

the model and the package, and so a different interface could be needed for each package.

However, using the user variable array ooo will allow each package to communicate with

the model through the same interface, thus simplifying the source code.

37

Section5. Performanceonparallelsystems

Oneof theoptimizationfactorsshownin Fig. 1 is theability for codeto runin production
mode on multiple processors.This featureis essentialto avoid limiting the numerical
experimentswhich may be undertakenandthe platformsuponwhich the modelcan be
run.

Two major changes were necessary to allow the code, which had been running on a single

processor, to be run on multiple CPUs of the Cray PVP machine. The original unitasked

code executed the model one latitude row at a time (the chunk loop of Fig. 2) because of

memory constraints, marching from south to north, providing a natural coarse-grained,

one-dimensional data decomposition scheme for parallel execution. In unitasked mode,

this decomposition allowed the center and northern row variable fields and the fluxes that

had been calculated at the northern boundary of a grid row to be saved and used as the

southern and center row variable fields and southern boundary flux of the next row. Thus

each new row required only the reading of the new northern row of data from disk and the

calculation of the northern boundary fluxes. However, with multitasked execution, each

processor must calculate fluxes at both boundaries, and read all the data it needs from disc,

since it is not certain that it will have the data from the previous row. These two changes

result in a 10-15% increase in CP time for SKYHI, but allow the model to be run on par-

allel systems.

The scaling performance of SKYHI on the GFDL CR/T932 machine during a dedicated

test time is summarized in Table 1 for both one degree latitude (N90) and for one-third

degree latitude (N270) resolution. These numbers were obtained by running the model for

several timesteps without archiving any data, and do not include the time spent in the ini-

tialization section of the model, which is primarily spent reading the initial data and is not

parallelized. It is seen that scaling for both resolutions deteriorates above 9 processors.

This decay reflects the single-threaded nature of access to the model data stored on the

SSD, meaning that as the number of processors increases, processors must wait longer to

get the data they need. A further degradation of performance occurs on 24 CPUs, which

presents an inherent load balancing problem for 180 or 540 chunks.

Thus, on the Cray PVP machine, a one-dimensional domain decomposition is adequate,

since the number of processors which can be efficiently used on a problem will be limited

by the single-threaded SSD access time before the load balancing problem resulting from

the limited number of latitude rows becomes important. Currently only the one-third

degree latitude SKYI-II experiment is being run multitasked in production mode on the

GFDL T932; lower resolution runs are run unitasked to take advantage of the savings dis-

cussed above. The one-third degree experiment is multitasked 4 ways; on 4 processors the

code is still parallel efficient and the machine resource usage is balanced. The model at

this resolution requires 12% of the total system memory and 15% of the total system SSD,

38

sothat4 processors(15%of thetotalof 26) is reasonable.

WhenSKYHI wasportedto theLANL TMC CM-5 machine(Joneset al. [2]), however, it

was necessary to use a two-dimensional domain decomposition. The major longitudinal

dependence which was encountered was the polar Fourier filter, which required extensive

communication of data between processors, and resulted in a high computational price.

Jones et al. [2] discuss the performance of SKYHI on the CM5 machine and the reasons
for it.

Table 1: SKYHI PVP scaling characteristics

Wall clock
Number of Parallel

time Scaling
Resolution processors (seconds) Efficiency

N90 1 334 -

(unitasked)

N90 1 369 1.00 1.000

N90 3 125 2.95 0.983

N90 9 44 8.39 0.932

N90 18 26 14.19 0.783

N90 24 24 15.38 0.641

N270 1 267 - -

(unitasked)

N270 1 308 1.00 1.000

N270 3 104 2.96 0.987

N270 9 35 8.80

N270 18 23 13.39

N270 24 23 13.39

0.978

0.744

0.558

The SKYHI code running on the Cray PVP machine has also been modified to run on the

CRI T3E distributed memory machine. Pre-processor options are used to select either the

shared memory or distributed memory version of the code. These code versions differ by

about 1200 lines, primarily in code involving the T3E domain decomposition and assign-

ment of data to processors, the storage of tau file data in local memory rather than on disc,

communication of data between processors (shmem calls), and the data archiving process.

The code remains that which has been optimized for the vector machine; no specific T3E

39

optimizationshavebeenmade.Raw performanceof this codeon the T3E is about 36
Mflops/pe,comparedto 500MflopsonasingleT90 CPU.

Themajor sourceof loadimbalancein SKYHI is thepolarFourierfilter. All latituderows
which arefiltered takeaboutthesametime to execute,asdo latituderows whicharenot
filtered, with the differencein time betweenfiltered and non-filteredrows being about
15%.This informationmay beusedto decidehow to assignlatituderows to processors,
and so betterbalancethe load acrossprocessors,in contrastto a simple round-robin
assignmentof rowsto processors.For example,thebestbalancedload for anexperiment
with 180latitudeswasobtainedusingeightprocessors(in contrastto nine,tenor twelve),
eventhoughtheeightprocessorswerenotall responsiblefor the samenumberof latitude
rows. However,asthenumberof processorsapproachesthenumberof latituderows, the
ability to balancetheload decreases,andsomakestheround-robinapproachasgoodas
any.It is alsoof someadvantageto assigncontiguouslatitudesto the sameprocessor,all
otherfactorsbeingequal,andsoreduceoff-processorcommunication.

Scalingresultsfor a one-degreelatitudeversionof SKYHI with 160verticallevelsrunon
the 512 processorT3E at the National Energy ResearchScientific Computing Center
(NERSC)areshownin Table2. As in Table1,theseresultsarefrom severaltimestepsof
integration,without archivingdata,anddonot includethetime spentin the initialization
sectionof the model.This resolutionrequiresa minimumof fifteen32-Mw T3E proces-
sorsin orderto haveenoughmemoryperpeto integratethemodel.It cannotbeintegrated
on the GFDL forty 16-MwprocessorT3E systemwith one-dimensionaldomaindecom-
position; thereis not sufficientmemoryperprocessorto containthedataneededfor one
latituderow.The degradationof performancewith increasingnumberof processorsseen
hereis relatively lessthan on the T90, sinceSSD accessbottle-necksarenot involved.
Insteadwhatis seenis thereductionin theability to balancetheloadasthenumberof pro-
cessorsapproachesthenumberof chunksof parallelwork (180).

Table2: SKYHI T3E scaling characteristics

Wallclock
Number of Parallel

Time Scaling Efficiency
processors (seconds)

15 266 15.0 1.000

30 135 29.55 0.985

45 93 42.9 0.953

60 72 55.42 0.924

40

Section6. Conclusions

The increasein therelativevalueof humanresourcescomparedto machineresourcesat
GFDL in recentyearsmeansthatthe definitionof codeoptimizationmustbechangedto
includehumanfactorsin additionto thetraditionalmachineresourceusage. A meteoro-
logical model usedin researchmustbe structuredsothat investigatorsnot familiar with
the detailsandhistoryof themodelmayquickly learnenoughaboutit in order to useit
productively in their scientificresearch. This user-friendliness will usually come at the

expense of machine performance, a condition which must be accepted in order to optimize

the total scientific productivity of the model and of the scientists who use it.

A user-friendly model requires at a minimum that the code is "modular", meaning that the

different model processes communicate with the rest of the model in clearly specified

ways, as opposed to being intertwined. In this way investigators may easily examine indi-

vidual parts of the model, without having to extract the process of interest from a dense

ball of code, a process which often proves to be both difficult and time-consuming.

The restructured GFDL SKYHI general circulation model has also addressed two specific

topics which in the past have inhibited investigators in their productive use of SKYHI; the

ability to easily define new data files for later off-line analysis of the model output, and the

ability to easily add new variables to the model for specific investigations. The archive

module and user variable module described here have a standard format and are flexible to

user needs. These packages will continue to evolve in response to user desires and com-

plaints, becoming more user-friendly over time. Inclusion of Fortran 90 constructs in these

packages should result in some performance improvements and ultimately cleaner code,

albeit code which will look less familiar to the current user community.

SKYHI has been successfully integrated in production mode on the Cray T932 PVP

machine in both unitasked and multitasked modes using one-dimensional domain decom-

position. Parallel performance scales well with number of processors (if obvious load

imbalance configurations are avoided) to the point where the single-threaded nature of

SSD access limits performance. The same PVP-friendly source has been successfully run

in production mode on the CRI T3E machine using one-dimensional decomposition. Par-

allel performance on the T3E is relatively better because of the absence of the SSD bottle-

neck, but is ultimately limited by the one-dimensional domain decomposition.

At this time, three major areas remain which are negatively impacting the performance of

SKYHI on parallel systems. Single-processor performance remains an issue; whether

improvements in cache size and system software and utilities will improve performance

significantly or whether major code redesign is necessary is unknown. The lack of paral-

lel I/O significantly reduces the scaling efficiency shown in Table 2 in production runs;

when data are read or written, a single processor does the i/o while the remaining proces-

41

sorswait. Finally, the needfor a two-dimensionaldomaindecompositionto allow finer-
grainedchunksandthereforebetterloadbalancingis obviousasthenumberof processors
employedon a problemincreases.Thelongitudinaldatadependenciesin SKYHI which
must be handledin order to allow sucha decompositionhavebeen identified, and it
remainsto developamechanismto dealwith them,within thecontextof a user-friendly
model.

Acknowledgments. I would like to thank S. Fan, C. Kerr, J. Mahlman and D. Schwarzkopf

for reading the paper and offering valuable comments. Thanks also to the SKYHI user

community who have provided me with the feedback necessary to produce a model which

is becoming more user-friendly, and to J. Mahlman who recognized the need for a user-

friendly SKYHI and who provided me the opportunity to work to that end.

APPENDIX A

TEMPORAL CONTROL OF ARCHIVE FILE FORMS

Six variables are used to control the temporal characteristics of the archive file forms:

(1) the number of times which data is to be written to a file before closing the file and

opening another one;

(2) the number of seconds between writes to the file;

(3) the number of time levels that are to be averaged to generate the data that is to be writ-

ten;

(4) the amount of time to be counted toward the number of seconds between file writes at

the beginning of the run;

(5) the time in the run at which the file clock is to start;

(6) the time in the run at which the file clock is to stop.

Variable (1) allows one to write multiple files of a given file form during a job. File names

are created automatically following a simple pattern. By making the value of (2) larger

than the length of the job, the writing of the particular file form may be turned off. The

mechanism to define the time-averaging characteristics are defined by (3); if a snapshot

file is wanted, then variable (3) is set to 1. Otherwise, the combination of (2) and (3) deter-

mine the frequency of data sampling. Variables (5) and (6) allow one to write a file during

a specified period of an integration, and (4) provides a means to write files at the frequency

given by (2), but with an offset in time from the start of the job. These six variables are

named in a consistent way for each of the file types, differing only by a single letter, which

indicates the file type.

42

APPENDIX B

SUGGESTED PROCEDURE TO USE THE ARCHIVING MODULE

The following process is recommended when using the archiving module:

I) Decide which archive files are to be written during the experiment and define their

desired characteristics. The characteristics are found in the namelist and parameter file

associated with the given file type.

II) For each file type, choose one of the following options:

A) If no files of this type are desired:

1) Set the preprocessor variable defining the number of file forms of that type to zero.

2) Remove the namelist variables associated with that file type from the namelist.

B) If you desire either a subset or all of the default file forms:

1) Leave the preprocessor file form number variable at the default value.

2) For those file forms that are not being written:

a) Set the seconds between file writes to be larger than the run time of the job.

b) Set variable (3) of Appendix A to be 1, reflecting a snapshot file.

c) Set the spatial index parameters for the file form to all be 1, thus setting the size of

the array which will hold the data to be of length 1.

3) For those file forms to be written:

a) Set the namelist and parameter file to contain the desired file characteristics.

b) If the file form containing a subset of the standard file is to be written, modify the

subroutine defining the file contents so that it will contain the desired variables.

C) If a new file form is to be added:

1) Set the preprocessor file form number variable to the proper value.

2) Add the code to define the new file form, following the existing code pattern. Code

mods must be made to six to ten source files, dependent on the file type.

3) The mods involve duplicating code and changing file form numbers in the variable

names to the number of the new form. Additionally the user must define the vari-

able names to be placed in the file, following the provided patterns.

4) Modification to the script will be necessary to save any new files generated and to

assign the file characteristics, if desired.

REFERENCES

1. Fels, S.B., J.D. Mahlman, M.D. Schwarzkopf and R.W. Sinclair, 1980: Stratospheric

sensitivity to perturbations in ozone and carbon dioxide: radiative and dynamical

response. J. Atmos. Sci., 37, 2265-2297.

2. Jones, P.W., C.L. Kerr and R.S. Hemler, 1995: Practical considerations in development

of a parallel SKYHI general circulation model. Parallel Computing, 21, 1677-1694.

3. Hamilton, K., R.J. Wilson, J.D. Mahlman and L.J. Umscheid, 1995: Climatology of the

SKYHI Troposphere-Stratosphere-Mesosphere general circulation model. J. Atmos. Sci.,

52, 5-43.

43

44

DESIGN AND PERFORMANCE ANALYSIS

OF A MASSIVELY PARALLEL ATMOSPHERIC

GENERAL CIRCULATION MODEL

Daniel S. Schaffer * and Max J. Su_rez

NASA Seasonal to Interannual Prediction Project

NASA Goddard Space Flight Center

Code 971

Greenbelt, MD 20771

dans@j anus.gsfc.nasa.gov

÷1 301 286-3133

+1 301 286-0240 (FAX)

ABSTRACT

In the 1990's, computer manufacturers are increasingly turning to the development of

parallel processor machines to meet the high performance needs of their customers. Si-

multaneously, atmospheric scientists studying weather and climate phenomena rang-

ing from hurricanes to E1 Nifio to global warming require increasingly fine resolution

models. Here, implementation of a parallel atmospheric general circulation model

(GCM) which exploits the power of massively parallel machines is described. Using

the horizontal data domain decomposition methodology, this FORTRAN 90 model is

able to integrate a 0.6 ° longitude by 0.5 ° latitude problem at a rate of 19 Gigaflops

on 512 processors of a Cray T3E 600; corresponding to 280 seconds of wall-clock time

per simulated model day. At this resolution, the model has 64 times as many degrees

of freedom and performs 400 times as many floating point operations per simulated

day as the model it replaces.

1. INTRODUCTION

The general circulation modeling community constantly demands more computing

power to meet its needs. Short to medium range weather forecasters have used in-

creasingly faster machines to run higher resolution models. The improved solutions

obtained from higher resolution in numerical weather prediction is well known; Sim-

mons, et al. (1989), among others, document this. Higher resolution is also important

to seasonal and interannual variability studies (e.g. D_qu_ and Piedelievre, 1995 and

Lal, et al., 1997). For studies of longer time scale phenomena, completing model runs

at any reasonable resolution becomes the challenge. Coupled atmospheric/ocean sim-

ulations of E1 Nifio require enormous computational power. Recently, some modelers

have turned to ensembles of runs to produce better predictions; a strategy that mag-

nifies resource demands. For the time scales of global climate change, coupled model

*SAIC General Sciences Corporation; Laurel, MD

45

runs can last hundreds of simulated years (e.g. Manabe and Stouffer, 1994); for
studiesof the thermohalinecirculation, thosenumbersstretch into the thousands.

To meet theseneeds,supercomputermanufacturershaveofferedavariety of solutions.
Sincethe 1980's,parallel vector processorshave beenthe most widely used by the
GCM community. However,in the 1990'scache-basedmassivelyparallel processor
(MPP) machineshave becomeincreasinglyprominent. These machinespresent a
dual challengeto model designersof writing codethat runs efficiently within a single
processoryet scaleswell for hundredsof processors.

A snapshotof the progressof (mostly atmospheric)modeldesignerstoward meeting
thesechallengeswaspresentedin a specialissueof ParallelComputing in 1995. Drake,
et al. (1995)wrote a messagepassingimplementationof the National Center for At-
mosphericResearch(NCAR) Community Climate Model (CCM2) for the IBM SP2
and Intel Paragonmachines.Most notablewasthe poor singleprocessorperformance
they attributed to inefficient cacheuse (a result noted repeatedly in the literature).
Jones,et al. (1995)implementeda parallelversionof the GeophysicalFluid Dynami-
cal Laboratory (GFDL) AtmosphericGeneralCirculation Model (AGCM) running on
the the CM-5 and SGI/Cray C90. Singleprocessingelement(PE) performanceand
scalingwere quite good on the C90 but hamperedon the CM5 by over-useof mem-
ory they attributed to poor algorithmic design. Lou and Farrara (1996)optimized
a parallel versionof the UCLA AGCM for the Paragonand SGI/Cray T3D/E. The
model scalesfairly well but their preliminary attempts at cache-basedoptimizations
haveyielded modest improvements.

Here we describe the parallel designand performanceof an AGCM designedfor
climate studies. The primary objectives are efficient single PE performanceand
scalability on MPPs. Section 2 describesthe scientific basis of the model. Section
3 explains the high-level model design, the parallelization methodology, and gives
highlights of the detailed design.Section4 analyzesthe model performance.Section
5 discusseshow the model is currently beingusedanddescribeson-goingoptimization
efforts.

2. MODEL DESCRIPTION

The dynamical portion of the GCM is basedon a finite-differenced,primitive equa-
tions dynamical core (Dycore) (Suarezand Takacs,1995)that allowsarbitrary hor-
izontal and vertical resolution. It is the dynamical core used by Goddard's Data
Assimilation Office in the Goddard Earth ObservingSystem (GEOS) GCM and by
NASA's Seasonalto Interannual Prediction Project (NSIPP). Its prognosticvariables
arethe two horizontal wind components,the potential temperature,the surfacepres-
sure, the water vapor mixing ratio, and an arbitrary number of passivetracers. In
the vertical, the discretization schemecloselyfollowsthat proposedby Arakawa and
Suarez(1983), but applied to a generalizedvertical coordinate (a -p). In the hori-
zontal, the equationsare finite-differencedon a staggeredlatitude-longitude grid (the
C-grid). To avoid linear computational instability due to convergenceof meridians

46

near the poles,a Fourier filter is appliedto all tendenciespole-wardof 45 degreeslat-
itude. The model also usesa scale-selectivefilter (Shapiro,1970)to damp grid-scale
variance that can lead to non-linearcomputational instability. The model is inte-

_grated.in_t!me_using_a,leapf.rogschememodifledasproposedby Brown and Campana
(1978)and by applying a weaktime filter (Asselin,1-9-72)i.....

The solar parameterization (Chou, 1992)modelsabsorption due to 03, CO2, water
vapor, O2, clouds, and aerosols,as well as gaseous,cloud, and aerosolscattering.
The infrared parameterization(Chou andSuarez,1994)includesabsorption by water
vapor, CO2, 03, methane, N20, CFC-11, CFC-12 and CFC-22 within eight spec-
tral bands. Other parameterizationsinclude the Louis et al. (1982) turbulence and
Zhou et al. (1996)gravity wavedrag schemes.Penetrativeconvectionoriginating in
the boundary layer is modeledusing the RelaxedArakawa-Schubert(RAS) scheme
(Moorthi and Suarez, 1992). The Mosaic land surfacemodel (LSM) (Koster and
Suarez,1992)computesarea-averagedenergyand water fluxes from the land surface
in responseto meteorologicalforcing. A grid squareis sub-divided into relatively
homogeneoussub-regions("tiles" of the mosaic),eachcontaining a singlevegetation
or bare soil type.

3. COMPUTATIONAL DESIGN

We begin by describingthe high levelstructure of the GCM so asto provide context
for the results in section 4. The model is divided into self-containedcomponents,
eachoperating on its own space(grid) and time scales."Coupling" softwareconverts
data from onemodelgrid to another in parallel. The couplersservethe samepurpose
asthe NCAR Climate SystemModel (CSM) flux coupler (Bryan, et al., 1996). The
GCM driver that ties togetherthesecomponentscanbeatmosphericonly, oceanonly,
coupledatmospheric/ocean,etc. Presently,the major componentsfor this AGCM are:

1. Dynamics- Dycore, the Shapirofilter and the model stepping functionality.

2. Slow Physics- The longwaveand shortwaveradiation calculations.

3. FastPhysics- The remainderof the AGCM; convection,turbulence, land processes,
etc.

The parallelization is implementedusing a horizontal data domain decomposition.
Put simply, eachprocessoroperateson a slab of data extending from the surfaceto
the top of the atmosphere.The primary advantageof this decompositionis that the
number of horizontal grid points available to divide amongthe processorsis large,
allowing utilization of hundredsof PE's. In addition, physics calculations such as
longwave,shortwave,etc. become"embarrassinglyparallel". Finally, at a practical
level, usingthis schememeansthat the original plug compatible physicssubroutines
canbe retained, unmodified, in the parallel implementation.

The processorsare laid out in a rectangulararray so that eachPE has exactly one
neighboron eachof four sides.The numberof PE's in the X andY direction (NX and

47

NY) aswell asthe numberof grid points within eachPE (IM and JM) areselectable
at run-time. In particular, IM can be different for eachof the NX columns of PEs
and JM different for eachof the NY rows. Ghost (shadow) regions are defined to

facilitate local addressing and nearest neighbor communication. When code such as

horizontal advection needs to access an array element outside the local processor, a

communications call is made to fill in the ghost region. Once the data are in place,

the code can process as if it were written for a computer. The communication is

bundled over all levels to reduce the impact of latency.

Since the primary objective is implementation on a distributed memory MPP, a

message-passing scheme is used for the communication. Generic synchronous point

to point send/receive routines provide the backbone for this scheme. Currently they

are implemented using calls to either native Cray shared memory software (SHMEM)

or message passing interface (MPI) routines. This backbone is packaged into a single

"communication primitives" module. Since this is the only code that varies between

implementations, porting the model is quite simple.

While most of the communication in the model is nearest neighbor, the polar filter is

a significant exception. It is implemented by first transposing the data from an (X,Y)

to a (Y,Z) decomposition, then executing local FFTs, then transposing back. This

implies that the greater the decomposition in X, the poorer the performance of the
i

polar filter. Conversely, nearest neighbor communication scales as _ only if the
processor layout is close to symmetrical. These conflicting performance considerations

guide optimal processor layout choice and represent the most obvious disadvantage

of this decomposition strategy.

Currently, no load balancing is implemented. The sources of imbalance are: 1. The

shortwave code; radiative transfer calculations need only be performed for sunlit

soundings. 2. The land surface code; no computations are needed for ocean points

and the uneven distribution of tiles further un-balances the problem. 3. Cumulus

convection; fewer computations are needed where convection does not occur. 4. The

polar filter; it only operates pole-ward of 45 degrees latitude. The utility of imple-

menting load balancing schemes will be discussed in section 5.

The Dynamics, all upper-level Physics routines and control and communication rou-

tines are written in FORTRAN 90. Most of the low-level, plug-compatible, com-

putational routines in the Physics have been left in FORTRAN 77. Array syntax,

user-defined types, subroutine overloading, modules, and dynamic memory allocation

are used extensively. Use of these features has helped to create reasonably well-

structured code and greatly facilitated debugging. Since all memory is dynamically

allocated, the model runs at any resolution using any processor layout without re-

compilation. On the downside, dynamic memory use may hamper future cache-based

optimizations.

48

4. RESULTS AND PERFORMANCE

The model is currently being run on the DEC Alpha workstation, Cray T3E, and
Cray J90. To validate the code, results were compared to those from the serial,
FORTRAN 77, production versionfor the sameinitial and boundary conditions at a
resolution of 72x45x22.At this resolution,Dynamicsand Fast Physicsare run at 9
minute intervals and SlowPhysicsevery3 hours. After 3 hours, checksumsof state
variables,budgetsand other diagnosticquantities for the old and new code differ at
the round-off level; for oneor multiple processors.

To assessperformance,the floating point operations (FLOPs) arecountedfor a one
processorrun on a CRAY J90usingthe PERF utility. Thesenumbersare generally
more conservative (up to 25%) than the operation counts producedby T3E-native
counters. Initialization and finalization times are not counted. No model output
is done during the "run" phasefor purposesof thesebenchmarks. Performanceis
then computed by dividing the FLOP count by the run-time measuredby wall-clock
timers. The 72x45x22resolution problem was run on the Cray T3E-600 using 32
bit words for up to 64 PEs. The peak performanceis 1.35Gflop/s, corresponding
to 20 secondsrun-time per simulatedmodel day. A 64 bit versionruns at only 28

seconds per day; largely due to the fact that the code is memory-access bound. In

comparison, the original production version running multi-tasked on the Cray J90

(64 bit) simulates one model day in 50 seconds.

To truly exploit the power of the T3E machine, we turn to a high resolution problem;

576x360x22 (0.625 ° by 0.5 ° by 22 levels). Preliminary tests show a Dynamics time

step of one minute is required to satisfy the Courant-Friedrich-Levy (CFL) condition

for linear numerical stability at this resolution. The Fast Physics is run every 10

minutes and Slow Physics at 3 hour intervals. For a 3 hour run, the floating point

operations total 686 billion. The 32 bit version requires approximately 1 billion words

of memory; translating to a minimum of 64 Cray T3E-600 PEs. The GCM was tested

for processor configurations totaling up to 512 PEs. Experimentation showed that for

512 PEs, a processor layout of 16 PEs in longitude, 32 in latitude is optimal. For that

case, the performance is 19.6 Gflop/s. This corresponds to 280 seconds of wall-clock

time per simulated model day.

The details of the T3E performance are shown in the speedup plots in figure 1. The

solid lines in the figure are curve fits of the data to Amdahl's speedup law:

1
S-

Fs+ F-2.
Np

where S is the speedup, Fs is the serial fraction, Fp is the parallel fraction and Np

is the number of processors. For a perfectly load balanced code, the effective single

processor performance is an estimate of how fast it would run on 1 PE if that were

possible. Notice that, in Dynamics, this number is higher than the per-processor

performance because it does not include the degradation due to communication as

49

Table 1: Floating point operations (in billions), run-time, total performance,and per
pe performancefor a 3 hour run of the 576x360x22resolutionproblem at 512PEs.

Code GFLOP Time (s)
Dycore
Shapiro
Step
Longwave
Shortwave
Lsm
Ras

427.3
74.6
33.6
34.3
48.0
6.8
4.6

17.77
5.56
1.57
0.97
2.77
0.96
1.21

Gf
24.1
13.4
21.4
35.4
17.3
7.1
3.8

Mf/PE
47.0
26.2
41.8
69.1
33.8
13.8
7.4

the problem is scaledto 512 PEs. The floating point operation counts show that
Dynamics is responsiblefor the great majority of the work. This is largely due to
its relatively short time steps. The fact that Slow Physicsdoesnot scaleperfectly is
currently under investigation.

Table 1 showsa breakdownof performanceof the major GCM components. The

dynamical core consumes the most run-time and will need the greatest attention

during future optimizations. The poor scaling of the Shapiro filter is expected; it does

relatively few floating point operations per communication. That the Step function

does not scale perfectly is merely an artifact of the code design. It fills the ghost

regions of the state variables; work that could just have easily been done in Dycore.

The LSM and RAS codes are "super-scaling". This commonly observed result occurs

because as the number of processors increases, the amount of memory needed per pe

decreases and, consequently, the data fit better in cache.

The rated performance of the Cray T3E 600 is 600 Mflop/s. While, in practice, few

codes reach 200 Mflop/s per PE, it is clear from table 1 that our per-PE performance

is much lower. One reason is poor cache re-use. As a first cut, this code was written to

mimic the original serial code which was designed to run efficiently on vector machines.

As of yet, no serious cache-based optimizations have been attempted. A second reason

is communication costs. Measurements by the T3E Apprentice utility indicate that

25% of the Dycore run-time is communication. Latency is significant. Even with

bundled Ghost calls, preliminary measurements indicate that 35% of the nearest

neighbor communication time is latency. When the Ghost calls are unbundled, Dycore

performance degrades by 20%. A third cause of the poor single-pe performance is load-

imbalance as described earlier. Strategies to address these inefficiencies are discussed

in the next section.

A Cray J90 SHMEM version of the code for the same resolution performed at 90

Mflop/s on one processor. Since the rated performance of the J90 is 200 Mfiop/s,

the model is clearly vectorizing quite well. Although a multiple processor J90 version

has not been run for this resolution, past experience suggests that it should perform

5O

ARIES (686 Gflop)
30 ' '......... ' ' ' >

Eft I pe perf = 51.49 Mf./s /"

Pk pert" ffi 19.63 GfYs /
/"

25 Pk per_pe ffi38.35 Mf/s /

Fp ._/ffi99.93 ,% ./" _

20 S @ peak ,,_

° I .J10 .

0

600

500

400

300

200

100

0
1_ 2_ 300 4_ 5_ 6_

DYNAMICS (540 Gflop)
......... i , , _ t 2

i Eft 1 pe perf = 56.85 MtTs /

30 - Pk perf ffi20.62 Gf/s /"
/

: Pk pert_pe ffi40.27 Mf/s /

25 i Fp ffi99.92 % . /

S @ peak = 362_2/ /_
20 •

I05 "/_

0 .. 0
0 100 200 300 400 500 600

600

500

400

300_

200r_

100

SLOW PHYSICS (84 Gflop)
............................. >q600

Eft I pe perf ffi47.90 Mf/s /"]

25 "Pk pert" = 19.28 GfYs //" -_ K_

Pk perf/pe ffi37.66 Mf/s / / _ vvv

20 - Fp = 99.95 % . / J

S @ peak = 402.46,/_ 1 400
"_ 15. //j"/ 300

lO 200

ov_ 0
0 100 200 300 400 500 600

PROCESSORS

FAST PHYSICS (58 Gflop)
.............................. ' ">_ 600

14 Etf I pe perf = 25.23 M_s ,//_/t

Pk perf = 12.48 Gf/s I_ _ 500

12 Pk perf/pe = 24.38 M_. /_
Fp ffi 99.99 % /_

10 S@peak ffi494.80 / 1400_.

8 31111

6 200_• /
2 _100
O_ 0

0 100 200 300 400 500 600
PROCESSORS

Figure 1: Speedup plots for 3 hour runs of the full GCM and its three major components.

The floating point operations in billions are given at the top of each graph. The asterisks

represent the speed in Gflop/s for 128, 256 and 512 PEs. The dot-dashed line represents a

perfectly linear speedup. The solid curve was obtained by fitting the operations and run-

times to Amdahl's speedup law (see text). Fp and S are as given in Amdahl's law. The

effective single PE performance is the curve value for Np=l.

51

at about 1 Gflop/s for 16 PEs. An MPI implementation on the J90 was found to

significantly degrade the code's performance; presumably due to the high level of

overhead in the MPI software. A T3E MPI version has not been tested.

5. DISCUSSION

As currently written, the code performs well enough to enable production runs at high

resolution (0.6 ° longitude by 0.5 ° latitude by 22 levels) using 512 processors. In fact,

a one year run at this resolution has already been completed. The model can also run

efficiently at lower resolutions. For example, a 1.25 ° longitude by 1 ° latitude problem

running on 128 processors would actually out-perform the high resolution case. The

Dynamics, Fast Physics and Slow Physics would run with the same efficiency as in

the high resolution case since the amount of work and number of processors have both

decreased by a factor of 4. However, for the lower resolution, a Dynamics time step of

2 minutes could be taken, significantly improving the model throughput. The same

reasoning applies to a 2.5 ° longitude by 2° latitude problem running on 32 PEs. For

that resolution and lower, an ensemble of runs most effectively utilizes the 512 PE

machine. Such ensemble runs are currently underway. Another planned application

of the model is to couple it to a parallel version (currently under development) of

the Poseidon ocean model (Schopf and Loughe, 1995). A planned 100 year coupled

run using a 2.5 ° longitude by 2 ° latitude atmospheric resolution running with 32

processors should be quite feasible.

Five major avenues of optimization are under investigation; semi-implicit time differ-

encing, single PE optimization, reduction of software latency in the communication

code, load balancing, and parallel/asynchronous I/O. As the results indicate, for

the high resolution case, Dynamics is the bottleneck due to the small time step. A

semi-implicit time differencing scheme is currently being developed. Successful im-

plementation of this scheme would allow the time step to be raised to perhaps 2-4

minutes for the high resolution problem.

Single PE optimization will largely be achieved by better cache re-use. Preliminary

analysis shows that the local storage for one sounding in the longwave code for the

high resolution case could fit entirely in cache. Obtaining such a fit should enhance

performance. A similar strategy could be applied to the shortwave and Fast Physics

codes. Further single PE optimization may require more draconian measures such

as re-organizing data structures and writing key components in assembly language.

Of course, such modifications would degrade vector performance on parallel vector

machines as well as the clarity of the code itself.

As mentioned, communications latency is significant. Much of this latency appears to

be due to unnecessary overhead in the "communication primitives" software. Efforts

are underway to eliminate this overhead by eliminating communication buffers and

superfluous memory access. Elimination of this excess latency should, for example,

enable the aforementioned coupled run to scale well beyond 32 processors.

52

Off-line experimentation suggeststhat load balancingwill improve the performance
of the shortwave and LSM calculations. The re-distribution of data is determined
aheadof time so the only cost is the actual communication.Somebenefit could also
be gainedfrom a load-balancedpolar filter sinceat 512PEs, 60%of the polar filter
time is spent doing the actual FFT. For RAS, it is possibleno improvementat all
will be achievedsince a greatdeal of the run-time would haveto spentdetermining
how the data should be re-distributed.

For the long runs currently in progress,relatively little diagnostic output is needed
so the cost of I/O is insignificant. It is estimatedthat evena planned 5-fold increase
in model output will not presentanygreat difficulty. Shouldthis turn out not to be
the caseor if even more extensiveoutput is neededthen parallel/asynchronousI/O
may be required. Developmentof parallel I/O softwareis discussedin Sawyer,et. al.
(1998).

In conclusion,a parallel atmosphericgeneralcirculation model that successfullyex-
ploits the powerof MPP's suchasthe Cray T3E hasbeendeveloped.The model is
being usedfor high resolution runs aswell asensemblesof low resolution cases.On-
going efforts to improve singleprocessorperformance,reducecommunicationover-
head, and mitigate load imbalancing will enable even more effective use of these
powerful machines.

ACKNOWLDEGEMENTS

This project is supportedby the Global Modeling and Analysis Program in NASA's
Officeof Mission To Planet Earth under RTOP No. 622-24-47.Accessto the Cray
T3E-600 was provided by the Earth and SpaceSciences(ESS) component of the
NASA High PerformanceComputing and Communications (HPCC) Program. We
would like to acknowledgeJim Abelesof SGI/Cray for the help hehasprovided over
the yearsin designand optimization. Thanksalsogoto TomHeadof CarnegieMellon
for early work on the project and to Paul Schopfof GeorgeMason University for his
ideason the GCM design.

REFERENCES

Arakawa, A. and Su_rez,M.J., 1983:Vertical differencingof the primitive equations
in sigmacoordinates. Mon. Wea. Rev., 111, 34-45.

Asselin, R., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100,

487-490.

Brown, J.A. and Campana, K., 1978: An economical time-differencing system for

numerical weather prediction., Mon. Wea. Rev., 106, 1125-1136.

Bryan, F.O., Kauffman, B.G., Large, W.G., Gent, P.R., 1996: The NCAR CSM Flux

Coupler. NCAR Technical Note (NCAR/TN-424+STR, May 1996).

53

Chou, M.-D., 1992: A solar radiation model for use in climate studies. J. Atmos.

Sci., 49, 762-772.

Chou, M.-D. and Su_rez, M.J., 1994: An efficient thermal infrared radiation param-

eterization for use in general circulation models. NASA Technical Memoran-

dum, 3, 104606, 84pp.

D_qu_, M. and Piedelievre, J. Ph., 1995: High Resolution climate simulation over

Europe. Climate Dynamics, 11,321-339.

Drake, J., Foster, I., Michalakes, J., Toonen, B., and Worley, P., 1995: Design and

performance of a scalable parallel community climate model. Parallel Com-

puting, 21, 1571-1591.

Jones, P.W., Kerr, C.L., Hemler, R.S., 1995: Practical considerations in development

of a parallel SKYHI general circulation model. Parallel Computing, 21, 1677-

1694.

Koster, R.D. and Su_.rez, M.J., 1992: Modeling the land surface boundary in climate

models as a composite of independent vegetation stands. J. Geophy. Res., 97,

2697-2715.

Lal, M., Cubasch, U., Perlwitz, J., and Waszkewitz, J., 1997: Simulation of the Indian

Monsoon Climatology in ECHAM3 Climate Model: Sensitivity to Horizontal

Resolution. Intl. J. Climat., 17, 847-858.

Lou, J. and Farrara, J., 1996: Performance Analysis and Optimization on the UCLA

Parallel Atmospheric General Circulation Model Code. In Proceedings Super-

computing '96, Pittsburgh, PA, USA, ACM-IEEE.

Louis, J., Tiedke, M., and Geleyn, J., 1982: A short history of the PBL parame-

terization at ECMWF. In ECMWF workshop on Planetary Boundary Layer

Parameterization, Reading, pp. 59-80.

Manabe, S. and Stouffer, R.J., 1994: Multiple-Century Response of a Coupled Ocean-

Atmosphere Model to Increase of Atmospheric Carbon Dioxide. J. Climate,

7, 5-23.

Moorthi, S. and Su_rez, M.J., 1992: Relaxed Arakawa-Schubert: A parameterization

of moist convection for general circulation models. Mon. Wea. Rev., 120,

978-1002.

Sawyer, W., Lucchesi, R., Lyster, P.M., Takacs, L.L., Larson, J., Molod, A., Nebuda,

S., and Pabon-Ortiz, C. 1998: Parallelization aspects of an atmospheric gen-
eral circulation model for data assimilation. In Proceedings High Performance

Computing '98, Boston, MA, USA.

Schopf, P. and Loughe, A., 1995: A reduced-gravity isopycnic ocean model- hindcasts

54

of E1Nifio. Mon. Wea. Rev., 123, 2839-2863.

Shapiro, R., 1970: Smoothing, filtering and boundary effects. Rev. Geophys. Space

Phys., 8, 359-387.

Simmons, A.J., Burridge, D.M., Jarraud, M., Girard, C., and Wergen, W., 1989:

The ECMWF Medium-Range Prediction Models Development of the Numer-

ical Formulations and the Impact of Increased Resolution. Meteorol. Atmos.

Phys., 40, 28-60.

Su_rez, M. J. and Takacs, L.L., 1995: Documentation of the Aries/GEOS dynamical

core Version 2, NASA Technical Memorandum, 5, 104606, 58pp.

Zhou, J., Sud, Y.C., and Lau, K.-M., 1996: Impact of orographically induced gravity-

wave drag in the GLA GCM. Quart. J. Roy. Meteor. Soc., 122, 903-927.

55

56

Requirements and Problems in Parallel

Model Development at DWD

Ulrich Sch ittler, Giinther Doms

Deutscher Wetterdienst, Postfach 100465, 63004 Offenbach, Germany

usahaett ler@dwd, d400. de

phone: +49 69 8062-2739; fax: +49 69 8236-1493

Abstract

Nearly 30 years after introducing the first computer model for weather fore-

casting, the Deutscher Wetterdienst (DWD) develops the 4th generation of its

numerical weather prediction (NWP) system. It consists of a global grid point

model (GME) based on a triangular grid and a non-hydrostatic Lokal Model1

(LM). The operational demand for running this new system is immense and

can only be met by parallel computers.

Regarding former NWP models, several new problems had to be taken into

account during the design phase of the system. Most important are the porta-

bility (including efficieny of the programs on several computer architectures)

and an easy code maintainability. Also the organization and administration

of the work done by developers from different teams and institutions is more

complex than it used to be.

This paper describes the modular approach used for the design of the LM

and discusses the effects on the development. Some results of investigations

from GMD (German National Research Center for Information Technology)

and the software engineering company Pallas are presented on how the LM

will perform on different computer architectures and how new hardware will

influence the programming style used.

1 Introduction

In 1996 DWD started to develop the 4th generation of its NWP system. The cur-

rent 3rd generation operational system consists of a spectral G1obM Mode11 (GM),

a regional grid point model for the synoptic and meso-a scale covering the North-

ern Atlantic and Europe (the Europa-Model1 EM) and a high resolution meso-_ scale

Deutschland-Model1 (DM). EM and DM are running the same code but with different

domain sizes and resolutions.

57

In the new system, GM and EM are combined to a global grid point model GME with

physical packages based on the EM/DM. It should produce global forecasts for up to 7

days at least in the quality of the EM. The hydrostatic DM will be replaced by a non-

hydrostatic Lokal ModelI(LM),wh_ch_willheused_._fora.um.e..r.i_cal we.ather prediction

on the meso-¢3 and on the meso-7 scale as well as for the evaluation of local climate

and for various scientific applications covering a wide range of spatial scales (down

to grid spacings of about 100 m). The weather forecasts include clouds, fog, precipi-

tation, local wind systems and also severe weather events. The whole system will be

used as simulation and research tool for applications such as parameterizations, data

assimilation and climate investigations. For the development of both models collabo-

rations have been started with several national and international research institutes

and universities.

The initial resolutions of the models for NWP (,,_ 55 km horizontal for GME with 31

levels and ,,_ 8 km for LM with 35 levels) will be increased in the next years (to ,_ 25

km for GME with 40 levels and ,_ 2-3 km for LM with 50 levels) demanding a com-

putational power of about 300 x 1012 floating point operations for a 24 hour forecast

for each model. To meet these requirements, GME and LM have been parallelized

and implemented for distributed memory parallel computers using Standard Fortran

90 and the Message Passing Interface (MPI) as parallel library. But they can still be

executed on conventional scalar and vector computers where MPI is not available.

With such a computer power necessary, the efficiency of the models is extremly depen-

dent on the underlying hardware. Changes to computer and processor architectures

in the past have forced model developers to a total restructuring and recoding of their

codes. With the development speed of computers in mind it can be foreseen that the

frequency of such updates will be increased in the future. On the other hand it is not

clear today which computer or processor architecture will be the most promising or

affordable one in about 3-5 years. To the well known requirements of code maintain-

ability and efficiency on one computer system now also comes the portability to and

the efficiency on a wide range of different computer systems and architectures. At the

same time the program design should also allow for easy code modifications to react

not only on changes in computer hardware but also on new scientific developments.

Another problem of the model development is that only few scientists involved do have

experience in parallel programming or in the new features of Fortran 90. Therefore,

a good strategy has to be implemented that enables also programmers with only few

knowledge to work on the code.

This paper reports on the development progress reached so far at DWD. Section 2

gives the basic features and parallelization strategies of both models. The modular

approach used for the design of the LM is described in Section 3. The effect of the

modularity on the development work today and in the future is discussed. Some future

problems regarding computer architecture and programming style are presented in

Section 4.

58

2 Description of the Models

Detailed scientific documentations are available for both models [1, 2]. Therefore, only

some basic features will be given here. A more comprehensive summary can be found

in [3].

2.1 The Nonhydrostatic Regional Model LM

Equations, aJgorithms and grid structure

The LM is based on the primitive hydro-thermodynamical equations describing com-

pressible nonhydrostatic flow in a moist atmosphere without any scale approxima-

tions. A basic state is subtracted from the equations of motion to reduce numerical

errors associated with the calculation of the pressure gradient force in case of slop-

ing coordinate surfaces. The continuity equation is replaced by an equation for the

perturbation pressure, which becomes a prognostic variable besides the three velocity

components, temperature, water vapour and cloud water. The set of model equations

is formulated in rotated geographical coordinates and a generalized terrain following

vertical coordinate.

Spatial discretization is by standard second order finite difference schemes on a

C-/Lorenz-grid. The time integration is performed with the leapfrog-method using

Klemp's and Wilhelmson's [4] time splitting technique including extensions proposed

by Skamarock and Klemp [5] to solve for the sound and gravity wave terms. The

idea of the time splitting is to treat the fast terms describing sound and gravity wave

propagation with small time steps Ats while doing a large step At for the slow terms

(advection, physics). Because only a subset of terms in the model equations is inte-

grated with a small Ats whereas the computational expensive slow terms have to be

updated less frequently, the algorithm becomes numerical efficient.

The physics package of LM has been adapted from the operational hydrostatic DM

and thus only applies on the meso-_ but not on smaller scales. Work on new param-

eterization schemes to upgrade the physics for model applications on smaller scales

is in progress.

Parallelization

The parallelization strategy for the LM is the 2D domain or data decomposition

(grid partitioning) which is well suited for grid point models using finite differences.

This strategy also is used and described by several other authors [6, 7, 8, 9]. Each

processor gets an appropriate part of the data to solve the model equations on its own

subdomain. These subdomains are arranged in a two-dimensional array of rectangular

tiles. The local data structure of every processor contains additional rows and columns

to store the values of grid points belonging to neighboring processors (see Figure 1).

During the integration step each processor updates the values of its local subdomain;

grid points on the edges are exchanged using explicit message passing.

59

°.,... ,.°

.., ,..

• °1.... i.-

. .,°. ,..

. °,... ,°.

.., ,..

°., ,..

.., ,._

Figure 1: 2D domain decomposition with local data structure

The splitting method used in the LM is implemented with an implicit Crank-Nicolson

method in the vertical and with an explicit forward-backward scheme in the horizon-

tal. Therefore, only a nearest-neighbor exchange, i.e. local communication, is neces-

sary for this model.

2.2 The new Global Model GME

Equations and algorithms

The system of equations solved in the GME is based on the hydrostatic primitive equa-

tions. These equations are integrated using a semi-implicit algorithm. The explicit

part is solved with a three time-level semi-Lagrangian scheme while the semi-implicit

corrections are computed by solving an elliptic PDE, namely a Helmholtz-equation.

Grid Generation

For the horizontal discretization of the equations a triangular grid based on the icosa-

hedron is introduced. It was first described by Sadourny et.al. [10] and Williamson

[11]. The approach outlined here is based on the work of Baumgardner [12]. The same

grid today also is used by Loft [13].

To construct the grid, the sphere is divided into 20 spherical triangles of equal size

by placing a plane icosahedron into it. The 12 vertices of the icosahedron touch the

sphere, one vertex coincides with the north pole and the opposite one with the south

pole. The spherical triangles are defined by the great circles connecting two vertices

respectively. Each of the 12 vertices then is surrounded by 5 spherical triangles. Two

adjacent triangles are combined to form a "diamond", i.e. a logically square block.

For further grid generation, the sides of the 20 main triangles are subdivided iter-

6O

Figure 2: Grids derivedfrom the icosahedron

atively into ni equal parts to form subtriangles. Each point in a main triangle is

surrounded by six triangles and accordingly is in the center of a hexagon. However,

the points which form the vertices of the icosahedron are surrounded by only five tri-

angles and therefore are the centers of pentagons. Some resulting grids are illustrated

in Figure 2.

The derivation of the necessary numerical operators (e.g. for the gradient, the diver-

gence or the Laplacian) for this triangular grid as well as a more detailed explanation

of the grid generation can be found in the documentation of the GME [2].

Parallelization

The diamonds can be looked upon as logical square blocks and therefore can be

implemented with normal data structures. In the sequential program a global twodi-

mensional field is stored as a threedimensional array. The third dimension represents

the 10 different diamonds covering the earth.

The parallelization strategy is by data decomposition again. But while this is straight-

forward for a regional model a more sophisticated strategy has to be used here. A

practical way for the parallelization is based on the viewpoint that every diamond can

be regarded as a regional model and is related to an idea of John Baumgardner. Ev-

ery diamond can be partitioned in the same way like the domain of a regional model.

Since all diamonds are of equal size, their decomposition is identical. If the processors

are arranged in a two dimensional grid corresponding to the decomposition of the

diamonds, every processor gets a part of each diamond. This kind of decomposition

is shown in Figure 3 for 4 processors.

Other decompositions of this triangular grid that minimize the amount of data to be

transferred have been investigated by GMD [14, 15]. But within the decomposition

described above the 10 parts of each diamond that a processor gets are distributed

regularly over the earth. From a statistical point of view there is a chance to get a

rather balanced load distribution, regarding the computations in the physical packages

(day-night radiation, land-water distribution).

61

3

o._

.° !

................:!.i

' _ /i "° /°°'° 2

: _..-.-y'-
: oO°

Figure 3: Logical view of the decomposition for the GME

Code Design for the LM

Modular design

Modularity is a basic attribute of NWP models, but in programming languages as

Fortran 77 it was difficult to express in the program design. Fortran 90 supports a

modular development approach by grouping together variable declarations and sub-

programs into MODULEs.

The LM uses MODULEs in three different ways:

The data modules form the data pool of the model (meteorological as well as

organizational variables). With the Fortran 90 USE-statement these data are

available for other modules. The data modules replace the COMMON-blocks used

in Fortran 77.

The second group of modules provide utility routines that handle small tasks

which need not be model specific. Examples are the time measurement, the de-

termination of the actual date and time or the computation of meteorological

variables derived from the prognostic variables. All routines necessary for par-

allel programming (i.e. routines containing calls to the message passing library)

are also put into utility modules.

All routines belonging to a model specific task (or package) are combined in

a source module. "Package" is a term defined by Kalnay [16] regarding the

physical packages, i.e. the para.meterization of the atmospheric subgrid-scale

physical processes such as radiation or convection. More general, also other

parts of the model (dynamics, input and output of data) can be viewed as

packages. By using the data and utility modules the source modules belonging

to these packages can be written in a way that they are independent from each

other.

62

Every module has to list the data and the routines usedfrom other modules.These
lists defineclearly the interfaceof the module. Figure4 showsthe modulesusedin the
LM and their dependencies.The top levelof the model is the main program lmorg.
It managesall tasks of the forecastby usingthe sourcemodules.

The clear modular formulation facilitates concurrentwork on different (source)mod-
ules.For the developmentof the LM this is very important, becausemost physical
parameterizationshave to be adapted to very high resolutions in the next months.
The work on the different schemescan be donewithout conflicting others. At the
sametime also different numerical schemesfor the dynamics are investigated and
tested.

Portability

One of the main goals for the source code development of the LM is portability. First

of all this means that the same code has to run on every computer platform without

having to change the source itself. This is obtained by using only standard Fortran 90

and MPI. MPI is adopted as a standard by nearly all computer vendors and efficient

implementations are available for their parallel machines. For sequential platforms

having no MPI implementation, dummy interfaces for the MPI routines are provided

for the LM.

A second aspect of portability is that the program should also be efficient on different

machines. The efficiency of the LM on vector processors is very good, because the code

is written in the same way as former highly vectorized models (the most inner loop

is horizontal east-west direction). The coding style used for vectorization has some

limitations for cache based scalar RISC processors. Many compilers on the other hand

have optimization features (such as loop unrolling or splitting, etc.) that can produce

rather efficient code for RISC processors. The optimizations performed on the LM

code are not hardware specific, but in a way that every processor architecture will

benefit (avoid duplicate computations in different routines by providing more memory;

avoid divisions, etc.)

Communication is not a very critical issue for the LM. During a time step only local

communications with the neighbors are necessary. To compute some mean values for

monitoring the forecast, a global reduce is done from time to time. On all machines

and with all domain sizes tested so far, the communication time was below 3 % of

the total time.

Up to now the LM has been tested on Cray PVP machines, Cray T3E, SGI Origin

2000, IBM SP2, Fujitsu VPP700, NEC SX-4 and several workstations.

Parallel Programming

As mentioned above, a portable parallel version of the LM is already available. Re-

search and development is going on in the parameterizations, the dynamics, the as-

similation scheme and related areas. The problem now faced is that most of the

programmers involved in this work do not have much experience in parallel program-

63

Source Modules Utilities Data

°°

Nesting

Setup

Input

Output

Radiation

"Turbulence

.._'Soil Model

(Convection X
\

ifferences

Points

I/O Utilities)

Utilities

Meteo 1Utilities

Environment

Parallel Utilities

D

A

T

A

M

O

D

U

L

E

S

to be developed
under reconstruction

Figure 4: Modular structure of the LM

64

ming. Therefore, a strategy has been thought of, to enable them to work on the

parallel LM and in a parallel computing environment.

The basic idea is that the computations in a subdomain are organized in the same

way as the ones in the total domain, if working on a shared memory computer. The

total domain has a specified number of boundary lines (= nboundlines) at each side,

on which values are provided by the surrounding model. The forecast is computed

only in the interior of the total domain. The same holds for every subdomain, with

the exception that the values on the boundary lines (also nboundlines at each side)

are provided by the neighboring processors via message passing.

Three different kinds of calculations have to be considered for the programming:

Loop organization: The horizontal size of a subdomain is (1... ±e, 1... j e).

Start- and end-indices are provided, if values have to be calculated only in the

interior part (istart... ±end, j start.., j end). If values have to be calculated

also on the boundaries, the loops range from 1 ... ±e and 1 ... j e, respectively.

These values are set at the beginning of the program, according to the number

of processors and the decomposition. Therefore, for most loop calculations there

is no difference between the sequential and the parallel program.

Grid point calculations: To perform computations on certain grid points, rou-

tines are provided to determine the local indices and the number of the subdo-

main in which a grid point is located from the global indices of the total domain

and vice versa.

Elemental parallel operations: Routines for special operations needing message

passing are included in the utility modules. These are tools for computing e.g.

mean or extreme values of the total domain as well as distributing values to or

collecting them from the nodes.

The features described above allow programmers to work on special modules of the LM

in a parallel environment without having much knowledge in parallelization. They are

able to get the code running, but an experienced programmer might have to optimize
the modules later on.

4 Future Development Problems

The LM will be the main forecast tool of DWD in the next decade. In 2001 it should

run with a grid size of 800 x 800 x 50 points and a time step of At = 10s. A 24

hour forecast has to be completed during 30 minutes of wallclock time. For that

purpose, the computing power at DWD is increased in the next years. The current

SGI/Cray T3E with 376 application processors will be replaced by a system with

65

Table 1: Predicted timings for different processor speeds

Processor runtime dynamics physics

!h) %
T3E600 4.78 64.83 33.64

T3E900 3.20 64.63 33.53

T3E4000 0.72 61.20 31.75

MPI Efficiency

%

1.53 0.86

1.84 0.86

7.05 0.81

1024 processors in 1999 and later on by a successor system, the architecture of which

is not clear today.

A current trend on the hardware sector is the clustering of SMP (symmetric multi

processing) systems. DWD now is concerned about the performance of the LM on

machines with _> 1000 processors and about such SMP clusters. Also it is very impor-

tant to know whether the programming style has to be changed to fully exploit the

two different connection systems (inter- and intranode communication) of clusters.

Similar problems have been studied e.g. by [17] and [18].

These questions have been investigated on behalf of DWD by GMD and the software

engineering company Pallas [19, 20]. They constructed a run time model for the LM

and predicted the performance on several partly non-existing computer architectures.

Table 1 shows predicted runtimes of the LM in the size described above for a 24

hour forecast on a 1024 processor T3E with different processor power (T3E600 with

600 MFlop/s peak performance, T3E900 and a fictitious T3E4000). Given are the

runtime in hours and the percentages for the computations (in the dynamics and in

the physics) and for the communications together with the parallel efficiency. The

same interconnection network has been assumed for all processor types, therefore

the percentage of the communication is higher for faster processors resulting in a

decreased efficiency. Table 1 shows that the processor speed has to be about 7 times

faster than that of the T3E600 to compute a 24 hour forecast in half an hour.

One way to reach the desired speed within one processing element is the utiliza-

tion of SMP nodes. As programming models for SMP clusters there are two major

alternatives:

Only message passing on all processors:

This will be efficient, if the MPI implementation can fully exploit the speed

of the shared-memory communication within one SMP-node. For the LM this

model has the advantage, that no changes are necessary.

Message passing on the cluster level and shared-memory programming within
one node:

The shared-memory programming could be done with automatic parallelization,

66

which most compilersprovide on loop level. The codecould alsobe taken asit
is today, but normally this is not very efficient. By using compiler directives,
the efficiencywill be better, but major changesto the codearenecessarythen.

Another problem of this approach is the portability, but OpenMP could be a

new standard for the parallelization with directives.

Again, the modular design of the LM would facilitate the adaption to SMP-clusters

using the shared-memory model, because an incremental parallelization is possible,

starting with the most computing intensive modules.

References

[1] G. Doms and U. Sch£ttler, The Nonhydrostatic Limited-Area Model LM (Lokal

Modell) of DWD - Part I: Scientific Documentation, Technical Report, DWD,

March 1997.

[2] D. Majewski, Documentation of the New Global Model GME, Deutscher Wetter-

dienst, 1996.

[3] U. Sch£ttler and E. Krenzien, Model Development for Parallel Computers at

DWD, Making its Mark - Proceedings of the Seventh ECMWF Workshop on the

Use of Parallel Processors in Meteorology, G.-R. Hoffmann and N. Kreitz, eds.

(World Scientific 1997) 83-100.

[4] J.B. Klemp and R.B. Wilhelmson, The Simulation of Three-dimensional Convec-

tive Storm Dynamics, Journal of the Atmospheric Sciences, 35 (1978) 1070-1096.

[5] W. Skamarock and J.B. Klemp, The Stability of Time-splitting Methods for the

Hydrostatic and Nonhydrostatic Elastic Systems. Monthly Weather Review 120

(1992) 2109-2127.

[6] A. Dickinson, P. Burton, J. Parker and R. Baxter, Implementation and Initial

Results from a Parallel Version of the Meteorological Office Atmosphere Prediction

Model, Coming of Age - Proceedings of the Sixth ECMWF Workshop on the Use

of Parallel Processors in Meteorology, G.-R. Hoffmann and N. Kreitz, eds. (World

Scientific 1995) 177-194.

[7] I. Foster and J. Michalakes, MPMM: A Massively Parallel Mesoscale Model, Par-

allel Supercomputing in Atmospheric Science - Proceedings of the Fifth ECMWF

Workshop on the Use of Parallel Processors in Meteorology, eds. G.-R. Hoffmann

and T. Kauranne, (World Scientific 1993) 354-363.

[8] T. Kauranne, J. Oinonen, S. Saarinen, O. Serimaa and J. Hietaniemi, The Oper-

ational HIRLAM 2 Model on Parallel Computers, Coming of Age - Proceedings

of the Sizth ECMWF Workshop on the Use of Parallel Processors in Meteorology,

G.-R. Hoffmann and N. Kreitz, eds. (World Scientific 1995) 63-74.

67

[9] U. Sch£ttlerand E. Krenzien,The Parallel "Deutschland-Modell" -- A Message-
Passing Version for Distributed Memory Computers, Parallel Computing, 23

(1997) 2215-2226.

[10] R. Sadourny, A. Arakawa and Y. Mintz, Integration of the Nondivergent Baro-

tropic Vorticity Equation with an Icosahedral-Hexagonal Grid for the Sphere,

Monthly Weather Review 96 (1968) 351-356.

[11] D. Williamson, Numerical Integration of Fluid Flow over Triangular Grids,

Monthly Weather Review, 97 (1969) 885-895.

[12] J. Baumgardner, A Three-Dimensional Finite Element-Model for Mantle Con-

vection, Ph.D. thesis, The University of California at Los Angeles, 1983.

[13] Richard D. Loft, A Modular 3-D Dynamical Core Testbed, Making its Mark -

Proceedings of the Seventh ECMWF Workshop on the Use of Parallel Processors

in Meteorology, G.-R. Hoffmann and N. Kreitz, eds. (World Scientific 1997) 270-

283.

[14] O. BrSker, K. Cassirer, R. Hess, C. Jablonowski, W. Joppich and S. Pott,

Forschungs- und Entwicklungsarbeiten im Rahmen des neuen Global-Modells

(GME) des DWD, Gesellschaft f/Jr Mathematik und Datenverarbeitung, Internes

Arbeitspapier, 28. November 1996.

[15] O. BrSker, Laufzeitvorhersagen fur parallele Versionen des globalen Wettermod-

ells GME, Diplomarbeit, Rheinische Friedrich-Wilhelms-Universit£t Bonn, M£rz

1998.

[16] E. Kalnay et.al., Rules for Interchange of Physical Parameterizations, Bull.

A.M.S., 70 (1989) 620-622.

[17] Chris N. Hill and Andrew Shaw, Tra_nsitioning from MPP to SMP: Experi-

ences with a Navier-Stokes solver, Making its Mark - Proceedings of the Seventh

ECMWF Workshop on the Use of Parallel Processors in Meteorology, G.-R. Hoff-

mann and N. Kreitz, eds. (World Scientific 1997) 250-269.

[18] Aaron C. Sawdey, Matthew T. O'Keefe and Wesley B. Jones, A General Pro-

gramming Model for Developing Scalable Ocean Circulation Applications, Making

its Mark - Proceedings of the Seventh ECMWF Workshop on the Use of Parallel

Processors in Meteorology, G.-R. Hoffmann and N. Kreitz, eds. (World Scientific

1997) 209-225.

[19] Untersuchung und Modellierung des Lokalen Modells (LM) f/ir Cluster paral-

leler Systeme mit gemeinsamem Speicher, GMD - Forschungszentrum Informa-

tionstechnik GmbH, Institut f/it Algorithmen und Wissenschaftliches Rechnen

(SCAI), Schlot_ Birlinghoven, 53754 Sankt Augustin.

[20] Der DWD LM-Code f/it SMP-Cluster: Leistungssch£tzung und Untersuchungen

zur Programmierung, PALLAS GmbH, Herm/ilheimerstrat_e 10, 50321 Br/ihl.

68

Experiences with parallelisation of the Unified Model at the UK Met. Office

Author: Rick Rawlins

Meteorological Office
London Road

Bracknell RG12 2SZ

United Kingdom

email: frawlins @meto.gov.uk

phone: 44 01344-856482
fax: 44 01344-854026

1. Introduction

1.1 Background

The Unified Model (UM) is the suite of software developed and used at the Met. Office for atmosphere

and ocean numerical modelling. The UM is the central component both of operational numerical

weather forecasts, and of all climate prediction research studies carried out at the Met. Office (within the

Hadley Centre). A range of temporal and spatial scales, including global and regional domains, is

supported in the formulation of the UM and allows it to be used in a number of different model

configurations, for a variety of operational and research activities. Following the introduction of the UM

into operational service in 1991, both its formulation and capabilities have been significantly enhanced.

Parallelisation of the model to take advantage of distributed memory platforms is a continuation of this

process.

The code structure of the UM was developed in Fortran77 with standard extensions, including allocation

of dynamic memory. I/O operations are coded in C as an aid to portability across platforms. Original

developments and operational running began on an 8 CPU Cray-YMP, subsequently to be replaced by a

16 CPU Cray-C90. For these shared memory architectures, parallelisation was achieved by autotasking

through pre-processor directives, with little involvement by programmers. Most programming effort for

optimisation went into maximizing vector lengths and ensuring that DO loops vectorized. In order to

take advantage of a massively parallel computer (MPP) with distributed memory, it was necessary to

make substantial changes to the code. Hence a migration strategy was planned for a project that would

take several years, starting from a team of 3 and building to include over 50 staff at the height of

development activities.

1.2 Hardware

A Cray-T3E was installed at the Met. Office in September 1996, with successive hardware upgrades

leading to the present configuration of 870 processors. Model runs of the UM are launched from a

graphical user interface serving a local network of Hewlett-Packard workstations. Operational and

climate production output data are transferred to an IBM 9672 R73 general purpose data server for

subsequent post-processing and archiving functions.

The Cray-T3E is used for a variety of jobs, sharing between operational and climate users in the
Met.Office. To make most efficient use of the MPP resource, the operational global model is run with

69

144processors,andeachstandardclimateproductionmodelis runwith72processors,althoughhigher
numbersof processorshavebeenusedin a 'catch-up'mode.

All functionsof theCray-C90wereprogressivelymirroredon theCray-T3Eduring1997.Productionof
operationalforecastswasswitchedoverin January1998andtheCray-C90dismantledandremovedin
February.

1.3 Requirements for parallelisation

The Met. Office has a rolling programme to improve operational scores and products whilst preserving

the timeliness of its services. This can only be achieved by a combination of higher resolution models,

enhanced physical parametrization and more accurate numerical solvers, all of which require more

computing power. In particular, a significant benefit had been evaluated from improving the resolution

of the operational global model [from 19 to 30 vertical levels, from 90 km to 60 km in the horizontal].

The next generation of coupled climate model required a higher resolution ocean model component,

increasing the number of horizontal points by x6, with a target of completing 4 model years per day on

72 processors. Overall this leads to a need for an increase in processing power by a factor of an order of

magnitude.

It was essential to preserve existing code structure where possible to allow parametrization

enhancements already under development to be integrated into the code simply, to avoid the generation

of new errors and the need for repeats of costly development tests. For both operational and climate

models, it was vital to validate results obtained on the Cray-T3E in comparison with those on the

Cray-C90.

Although code development was performed on the Cray-T3E, it was important to retain the portable

capability already established for the UM. This now needed to include the option of running in either
MPP or shared memory modes.

2. Parallelisation in the Unified Model

2.1 Basics

Parallelisation is achieved by regular domain decomposition of the grid point array with message

passing between domains accessed through a generalised set of library interface routines (GCOM),

initially developed at SINTEF. Atmosphere and ocean model configurations of the UM adopt different

horizontal domain decomposition strategies: into 2-D arrays and 1-D rows respectively. Message

passing is minimised by the introduction of halos around each horizontal domain. Segments of global

rows and columns are allocated for each processor simply by dividing the global domain geometrically,

starting from the NW comer: each processor will command a similar, but not necessarily identical

number of points.

Early investigations with parallel code in the UM used PVM as the underlying message passing method.

In fact the very first runs of a parallel UM were achieved on a distributed network of Hewlett-Packard

workstations. Later development switched to Cray-specific message passing as performance was ramped

up to meet production targets. It was found that the overhead of the GCOM interface layer was

significant for some classes of data transfer and explicit alternatives were written directly with

Cray-specific message passing, but retaining the option of GCOM for portability. In particular a routine

70

for swappinghalo informationbetweendomainsis frequentlycalledandgeneralised,butneededto be
re-writtenfor maximumefficiency.

Although thegeneralstrategyof domaindecompositionwasmaintainedthroughmostof thecode,
specificproblemswith globalprocesseswereresolvedby solutionswhich involved agatheringand
re-scatteringof datadomains.At thetoplevelof codeaCOMMONblock ispopulatedwith information
dependingon theprocessorconfiguration,ie thenumberof processorsin x andy directions.The
positionof eachprocessoris identifiedwith logical variablessuchas"atbase"and"attop",andkeysize
informationfor bothglobal andlocalarraysis alsoheld.

Thecompilerchangedfrom Fortran77ontheCray-C90to Fortran90on theCray-T3E,butnoneof the
extrafeaturesof Fortran90wereadoptedbeyondtheFortran77extensionsalreadynormallyavailable.
This wasnecessaryto preservea portablecapabilityandto reducetheextentof codeconversion.Hence
DO looplimits remainexplicit. It wasfoundto beadvantageousto harmonisetheuseof DO loop limits
by adoptingacommonsetof variablessuchas"START_POINT_NO_HALO"whichcouldbeused
generallyat lower levelsof thecodeonceinitialisedat anintermediatecontrolinterface.

Owing to theneedto introducedevelopmentalchangesin a largeandevolving suiteof software,code
for MPP wasintroducedunderacompiletimeswitch.Thisallowedapreliminarysetof changesto be
includedin themainbody of codefor bench-markingandotherinvestigationsbeforeeveryfunctional
areaaffectedby parallelisationneededto becompleted.

2.2 Atmosphere model

Primitive equations for model dynamics are solved on a regular latitude-longitude horizontal grid with

hybrid vertical coordinates, using a conservative split explicit scheme with a Heun timestep for

advection. Second or fourth order accuracy is supported, the latter requiring a double width halo to cater

for the extra horizontal data dependency. Routines for gathering, scattering and swapping halo

information were written as general purpose routines and it is possible to make these changes simply in

the code. However, to minimize the extra costs of fourth order accuracy it was also found necessary to

tailor code locally to account for the extra halo width explicitly.

Filtering of model increments is performed for pole-ward rows, with an equator-ward extent dependent

on maximum wind speeds. This process was parallelised across global rows and vertical levels,

re-distributing the data globally.

Negative humidity amounts can be generated by the advection scheme and in the original non-MPP code

these are zeroed while retaining global budgets by sharing accumulated deficits over all points in the

layer. This is an expensive method for MPP code and an alternative scheme was developed in which the

deficit was distributed over an array of near neighbouring points, which would normally confine

calculations to the local or adjacent processor. Model physics parametrizations had few horizontal

dependencies and so domain decomposition was relatively straightforward. Exceptions were parts of the

boundary layer code and convective momentum transport, which required interpolation between wind

and temperature staggering on the Arakawa 'B' grid. Most work concentrated on optimising single

processor performance for the compiler. The method of gathering over land points for physics

calculations of land processes was maintained for MPP coding, the only change needed being to identify

any all-ocean processors with no land points as special cases.

71

Thestandardoperationalglobalmodelrunswith 144processors(16N-Sby9 W-E) which is a
compromisebetweenreducingcommunicationsbetweenprocessorsandimprovingtheloadbalancing
of thephysics.Thelatterdependson thegeographicaldistributionof sunlitpointsfor radiation
calculationsandof thermodynamicallyunstablepointsfor convectioncalculations.

Assimilationof observationswasparallelisedby first distributingobservationsacrossall processorsfor
preliminaryprocessing,butwith loadbalancingof horizontalinterpolationof model increments
achievedoverlevels.

2.3 Ocean model

The ocean model domain decomposition is l-D, ie divided into latitudinal rows. This limits the

maximum number of processors available for a model run to the number of rows: for the ocean

submodel within the current climate production model (HADCM3) thi_ i_ 14A_

Filtering was found to lead to a strong loading imbalance and it was necessary to redistribute work, with

each vertical level of a filtered row being assigned to successive processors. Timings were originally
dominated by the Laplacian solver for streamfunctions, due to a high cost of communications, with halo

swapping and global sums being computed for each iteration of the solver. This was modified so that

each island summation was performed concurrently on different processors and requires that the number

of processors is at least as large as the number of islands for successful load balancing.

2.4 Atmosphere-Ocean coupled model

Atmosphere and ocean submodels run asynchronously within a single Fortran program, with a parallel

atmosphere submodel followed by a parallel ocean submodel, each using the same number of

processors. HADCM3 has different horizontal dimensions for atmosphere (96 columns by 73 rows) and

ocean (288 by 144) submodels. Each submodel has a separate array of primary data, which is swapped

at coupling intervals (usually 1 day). Coupling fields are gathered into a global domain for interpolation

to the grid of the new submodel before the integration proceeds. The coupling calculations here are

sequential, which impacts scalability, but coupling costs are less than 5% of the total elapsed time for a

standard climate run with 72 processors.

An alternative method of coupling using OASIS coupling software developed at CERFACS has been

introduced into the UM for coupling externally supplied models without needing to make extensive

changes to code. This technique spawns slave processes for atmosphere and ocean models,

synchronisation taking place with communication by unix pipes at coupling intervals.

2.5 Input/output

A distinctive feature of the UM system, labelled STASH, is the capability to extract a wide range of

model output fields with extra processing inside the model under user control. Output fields of global

domain were gathered onto a single processor and output to an expanding file. Most forms of STASH

processing involving time-meaning and spatial averaging were dealt with simply in this way. Most effort

was required in dealing with the output of lateral boundary conditions for regional models, extraction of

subsets of domains and timeseries of fields at individual grid points. In particular, interpolation of fields

for generating regional boundary conditions comprised was costly in comparison with sequential code

equivalents.

72

ParallelUO to a file was not found to be practical. Asynchronous I/O was attempted and used with some

success for a number of applications. However in an operational environment, difficulties with closing

of files before the next sequence in the suite led to a lack of robustness and this technique has not been

adopted for the current system. A number of other I/O changes, including re-structuring of output files in

a 'well-formed' format and pre-fetching of files led to significant savings.

2.6 Validation of migrated code

An assumed constraint for the MPP code structure is that model results should exactly compare at the bit

level for any number or arrangement (ie N-S:W-E split) of processors, and also against the non-MPP

single processor equivalent. This constitutes a strong test of the quality of coding and is a powerful tool

in exposing errors. In fact, a small number of minor errors in pre-existing non-MPP code became

apparent during the migration phase. A single exception to this constraint lies in code for assimilation of

observations, where the associated loss of efficiency would have been too great, and bit reproducibility

is achieved with different arrangemens of processors, but only for the same number of processors. The

main extra cost lies in the special treatment required for global sums, ensuring that results are added

from processors in the same order. It was found necessary to check model data states at the full 64 bit

precision of the model - standard UM data files compressed to 32 bit precision masked the onset of

departure of results. The constraint of ensuring compatibility between non-MPP and MPP modes for

model runs is likely to become less important in the future, once practical model configurations become

too big to fit into a single large memory (128 Mbytes) processor.

Model results for code migrated from Cray-C90 to Cray-T3E computers could not be compared exactly

because of the change from Cray to IEEE format number representation. A development suite was built

up on the Cray-T3E through 1997 to duplicate the operational system. Verification of meteorological

variables were compared to ensure that no gross changes had arisen. As development of the new suite

progressed, various optimisation changes affecting answers at the bit level were needed to meet timing

targets. It was found that virtually all verification comparisons were within the expected tolerance. The

only exceptions were small improvements in scores which have been attributed to using 64 bit

arithmetic for maths library functions, possibly with the extra precision of IEEE formatted numbers

adding further benefit.

Climate modelling studies place a greater reliance on close bit comparability of model results for

non-scientific modifications, since even minor systematic changes can lead to a climatological signal.

Validation was achieved by running a series of short control forecasts from initial states with minor

perturbations. The new model code - migrated to the MPP and optionally including optimisations - was

then run to check that its results fell within the control envelope. This was particularly effective when

the process was repeated, gradually stepping through individual modules during the first timestep, which

helped to identify departures in evolution.

3. Problems encountered during migration

In order to reduce costs, some calculations in halo regions were omitted, often with DO loops missing
out the first and last rows in local calculations over the horizontal domain. This led to occasional

inconsistencies and uninitialised data culminating in model errors. In particular, the treatment of

processors containing polar rows - with a halo beyond the polar row - generated problems for both

atmosphere and ocean models. This arose because of an implicit assumption for original code in both

models whereby polar values were updated with respect to dynamical but not to physical parametrisation

73

calculations.

A few portability issueswereraised.The increasedprecisionbutsmallerrangeof IEEEversusCray
format numbersexposedsomeconditionalteststhatwerebetterhandledby Fortran90intrinsics.Fortran
NAMELISTs areusedextensivelyin theUM but arenotstandardisedeffectivelyfor different
compilers,andneededextraeffort.

TheUM hasafairly complextop levelstructureof Unix scriptsthat arerequiredto handlethedifferent
andextensiveneedsof operationalandclimateproductionrunning,includingmodelcompilation,
reconfigurationof modelstates,automaticpost-processinganda capabilityfor restartinginterrupted
runs.Thisprovedto bemuchslowerin anMPPenvironmentandrequiredconsiderablerevisionof Unix
control scriptsin orderto reduceinter-processcommunicationsattheunix level.

I/O costswereamajor overheadfor themodelattheoutsetof themigrationprojectbut also,naturally,
variedwith thedetailsof systemimplementation,suchasthelevelof diskstripingandI/O cache
memory,asprogressiveupgradeswereintroduced.Togetherwith theincreasingvolumeof work
processedby themachineasmoreusersmigratedto theCray-T3E,eachchangetendedto affecttiming
bottlenecksandloadbalancingrequirements,makingit difficult to identify whichareasof codeneeded
themosteffort. Also, sincepotentialI/O savingswereassociatedwith relativelylargecodechanges
within themodel,suchasfor asynchronousI/O, it wasdifficult to evaluatetheir effectin advance.

Jobschedulingof UM integrationsfor thevarietyof Met.Office userswasfoundto beachallenging
task.Theoperatingsystemis still evolvingto makethebestuseof MPPresourcesfor thecombination
of largeoperationalUMjobs runningto deadlineswith a setof backgroundclimatejobs runninglarge
integrationsandshorttermdevelopmentneedingafastturnaround.

A setof earlyproblemsarosefrommodel runsbeingsuspendedat abarrierthroughaconflict in
messagepassing.Theseoccurredintermittentlydueto thevariationsin communicationstraffic from
otherwork onthe machine.Errorsof this sortweregenerallymoredifficult to trackdownandrequired
extradiagnosticsto be includedin analternativemessagepassinginterfaceto identify specific
processorsandmessages.Thegeneralqualityof proprietaryandotherdiagnostictoolsimprovedduring
themigrationperiod,whichaidedproblemsolvingastheMPPmodelcodematured.

4. Current developments

Having met initial operational timing targets, most work on the current UM is now concentrating on

single processor optimisation, since many opportunities remain for savings within physics

parametrisation codings. Effort on improving load balancing for specific code areas has continued. For

example sunlit grid points will be redistributed over processors for short-wave radiation calculations;

and a test for convecting points will be made to redistribute convection calculations over processors.

Load balancing for filtering in the ocean model is being improved by allocating work dynamically.

Division into segments of data - rather than just rows - enhances the balancing process, and it was found

that an assumption of work being proportional to the square of segment length provided a simple

estimate of processor load.

The main areas of new work lie in the introduction of two major new components into the UM:

variational assimilation (VAR) and a new semi-implicit non-hydrostatic dynamics, which are both in

advanced development but need to meet stringent accuracy and timing targets. These components have

74

adoptedthesameparallelisationparadigmastherestof theUM system,andwill sharemessagepassing
library interfacesandroutineswherepossible,buthaverequiredlocalsolutionsin their own
applications.In particular,VAR hasmadeextensiveuseof Fortran90constructs,whichhasprovided
extratestsfor MPPcapabilities.

Acronyms

• CPU: Central Processing Unit

• GCOM: Generalised Communication package for message passing: a set of Fortran library

routines comprising a flexible interface between model code and the chosen method of message

passing.
• HADCM3: A specific coupled model developed at the Met. Office Hadley Centre for climate

prediction experiments, involving extended production running.

• MPP: Massively Parallel Processing: signifies distributed memory in this context.

• OASIS: Ocean-atmosphere coupling software developed by CERFACS in France.

• STASH: System for processing model output diagnostics from the UM.

• UM: Unified Model.

• VAR: Variational Assimilation.

75

76

OPTIMIZING MC2 FOR RISC ARCHITECTURES:

FORECAST ACCURACY VERSUS PERFORMANCE

Stephen Thomas, Joshua Hacker, Michel Desgagn@, Roland Stull

Recherche en pr@vision num@rique (RPN), Environment Canada,

2121, route Transcanadienne, Dorval, Qu@bec H9P 1J3, CANADA

steve, thomas©ec, gc. ca, michel, desgagne_ec, go. ca

Tel. 1-514-398-5157, FAX 1-514-398-6115

Atmospheric Science Programme, University of British Columbia

1984 West Mall, Vancouver, B.C., V6T 1Z2, CANADA

jhack©geog, ubc. ca, rstull_geog, ubc. ca

Tel. 1-604-822-2148, FAX 1-604-822-6150

Abstract

Current generation RISC microprocessors operate at clock frequencies ranging up

to 1 GHz with the ability to complete two or more floating point operations (flops)

per clock cycle. To sustain a significant percentage of peak performance, large

secondary L2 cache memories based on fast SRAM technology are essential. Sin-

gle processor optimisations axe presented for the MC2 model code on the MIPS

R10000 and SUN UltraSparc II microprocessors. Ensemble forecast techniques for

high resolution mesoscale simulations are applied to assess the impact of aggres-

sive floating point optimisations on forecast accuracy. Parallel benchmarks of the

MC2 model (adiabatic kernel + physics) on the SGI/Cray Origin 2000 and Fujitsu

AP3000 are also presented. The relative efficiency of line relaxation preconditioners

for minimal residual Krylov iterative solvers is reported in the context of real-time

mesoscale forecasting.

77

1. Introduction

The performance of RISC microprocessors continues to double approximately every eigh-

teen months according to Moore's law and advances in semiconductor technology have

continued unabated for the past 30 years. There is every reason to believe that these

trends will continue at least in the short term. The current generation of pipelined RISC

processors includes the MIPS R10000, SUN UltraSparc II, DEC Alpha and HP-PA chips.

These processors operate at clock frequencies ranging up to 1 GHz with the ability to

complete two or more floating point operations (flops) per clock cycle. To sustain a

significant percentage of peak performance, code restructuring in combination with com-

piler and run-time optimisations must be applied judiciously. Sustainable floating point

execution rates are to a large extent determined by optimal use of the memory hierarchy.

Typically, secondary or level two (L2) cache utilisation must surpass 95% before large

performance gains are realized. Stride-1 memory references and cache blocking to pro-

mote data locality both serve to increase primary L1 and secondary L2 cache hit ratios.

Manual loop unrolling and interchanges will often expose instruction level parallelism

to the compiler. Given information about the memory hierarchy, a compiler can often

schedule instructions for pipelined execution and optimal cache usage. More aggressive

optimisations include floating point instruction re-ordering and reduced precision in math

libraries in exchange for increased speed. The most aggressive optimisations must be ap-

plied with care as they may seriously degrade the accuracy of a fluid flow simulation. It is

for this reason that we believe ensemble analysis techniques can be useful in assessing the

impact of optimisation strategies on atmospheric models which include complex physical

parametrisation packages.

RISC microprocessors, high-speed SRAM caches and high-bandwidth interconnection

networks form the building blocks of modern distributed and distributed-shared mem-

ory parallel computer architectures. In this paper we examine the performance of a

high-resolution mesoscale limited-area atmospheric model on the SGI/Cray Origin 2000

and Fujitsu AP3000 parallel computers using the Message-Passing Interface (MPI). The

Canadian MC2 is a fully compressible nonhydrostatic model based on second-order finite

differences in space and a three-time-level semi-implicit, semi-Lagrangian time discreti-

sation. The use of a terrain-following height coordinate results in a highly nonsymmetric

linear system to solve every time step for the pressure. Minimal residual Krylov solvers

have thus been implemented and the computational efficiency of the model using line re-

laxation preconditioners designed for both hydrostatic and nonhydrostatic flow regimes

is presented.

78

2. MC2 Model Formulation

The Mesoscale Compressible Community (MC2) model is a fully compressible nonhydro-

static limited area atmospheric model used in Canadian Universities and Environment

Canada for mesoscale and microscale atmospheric research. A detailed description of

the adiabatic kernel and numerical formulation of the MC2 model with open boundaries

is given in Thomas et al. [9]. In particular, the model employs a semi-implicit semi-

Lagrangian time discretisation scheme and a non-orthogonal coordinate system based on

the terrain-following transformation

z - h(X, Y)Z(X,Y,z)=H H-h(X,Y)

introduced by Gal-Chen and Sommerville [2], where h(X, Y) is the height of topogra-

phy. Following standard conventions, the Jacobian G and metric coefficients G IJ of the

transformation are denoted

---g-' - -8 0---2' - -5 oF

Given a polar stereographic projection at reference latitude ¢0 with map factor m =

(1 + sin ¢0)/(1 + sin ¢), S = m 2 and Coriolis parameter f = 2f_ sin ¢, the compressible

governing equations in projected X = (X, Y, z) coordinates become

DT

Dt

DU _ fV_K OS RT [Oq G13 Oq]Dt O---X- -_ + _ + Fu

DV _ _fU_K OS RT [Oq G23 0q]Dt O-'-Y - -_ + _ + Fv

Dw RT Oq
g +Fw

Dt G OZ

RT Dq Q

% Dt %

(1)

The contravariant vertical velocity W is related to the covariant velocity components by

the equation, W = G-lw + S(G13U + G23V). Potential temperature is O = Te-'% and

II = (p/po) '_ is the Exner function, where T = liE), q = ln(p/po), p0 = 1000 rob. R and

% are the gas constant and heat capacity for dry air at constant pressure, _ = R/%. U,

V and w are the wind images in projected (X, II, z) coordinates and g is the gravitational

79

acceleration. K - (U 2 + V2)/2 is the pseudo kinetic energy per unit mass. Momentum

(Fu, Fv, F_) and heat Q sources or sinks are also included.

The semi-implicit scheme results in an elliptic problem to solve every time step for a

log pressure perturbation q' about a stationary isothermal hydrostatic basic state. The

nonsymmetric system of equations resulting from a finite difference discretisation is solved

using the Generalized Minimal Residual (GMRES) algorithm of Saad and Schultz [3].

Skamarock et al. [4] use the mathematically equivalent GCR algorithm of Eisenstat et

al. [1] in a semi-implicit formulation of a compressible model (see also Smolarkiewicz

and Margolin [5, 6], Smolarkiewicz et al. [7]). The solver convergence criteria is based on

the RMS divergence or an estimate thereof, since it indicates when the discrete form of

the Gauss divergence theorem with open boundaries has been satisfied. Krylov subspace

methods are particularly well-suited to a distributed memory, message passing model of

computation since they rely primarily on distributed matrix vector multiplication and an

inner product implemented as a global reduction summation. Computational efficiency

(overall wall-clock time) is improved by finding a suitable preconditioner, which is often

problem dependent. The discretised elliptic operator in a nonhydrostatic pressure solver

will be dominated by the vertical terms when the aspect ratio AX/AZ is large. Therefore,

an effective preconditioning strategy is to invert the vertical components of the elliptic

operator and Skamarock et al. [4] apply a vertical alternating direction implicit (ADI)

line relaxation preconditioner.

A vertical ADI line relaxation preconditioner for the n × n linear system Ax = b is

based on the splitting A = H + V, where the H and V represent the horizontal and

vertical components of the discrete elliptic operator based on centered second-order finite

differences. The ADI iteration is derived from the pseudo-time integration of the heat

equation ut = Au+r to steady state, where the matrix A represents the discrete Laplacian

and

(z - y)x k÷l= (I + H)z k- b (2)

The largest possible pseudo-time step _ is chosen so that the above integration scheme

remains stable. A slightly more implicit scheme can be constructed using a line Jacobi

relaxation scheme

Tx_+_ k k= Xi+ 1 "4- X__ 1 "_- b, i = 1,... n (3)

where the index i represents an entire line of grid points. For the Poisson problem -Au ----

r on the 2D unit square, the matrix T = diag(Ai+l,i, Aii, Ai-l,i) is block tridiagonal,

where Ai+l,i = Ai-l,i, Ai-l,i and Aii = Ti. Second-order centered finite differences

imply T_ -- diag(-1, 4,-1). The vertical ADI scheme (2) splits and weights (with _)

8O

the diagonal terms of the discreteoperator, whereasthe line Jacobi schemeinverts the
diagonaland vertical off-diagonalterms of the operator. For nonhydrostatic problemson
isotropic grids, a fully 3D ADI preconditioneris implementedas in Skamarocket al. [4].
The solution of tridiagonal linear systemsof equationsimpliesglobal data dependencies,
thus a parallel data transposition strategy has beenadopted in a distributed-memory
implementation of the 3D ADI preconditioner.

3. Parallel Performance

For a distributed-memory SPMD model of parallel computation, the Nix Njx Nk com-

putational grid is partitioned across a Px x Py logical processor mesh. A domain de-

composition in the horizontal direction is employed due to the strong vertical coupling

in physical parametrisation packages and since the number of grid points in the vertical

direction is typically one order of magnitude less than in the horizontal. Each proces-

sor therefore contains Ni/Px × Nj/Py × Nk points, resulting in a near optimal surface

to volume grid point ratio for semi-Lagrangian advection and application of the elliptic

operator in the GMRES solver [8]. For both algorithms the communication overhead as-

sociated with boundary data exchanges between subdomains is minimal when compared

with computations. The 1D vertical ADI and Jacobi line relaxation preconditioners are

also well-suited to a horizontal decomposition, since the only global data dependency

is in the vertical direction within tridiagonal solvers. However, the 3D ADI precondi-

tioner requires global data in each of the three coordinate directions in order to solve

tridiagonal linear systems of equations during each ADI sweep. Thus, the right-hand

side b and solution x k must be re-mapped to perform line relaxations in each coordinate

direction in turn. Such a re-mapping takes the form of a data transposition algorithm

requiring collective MPI all-to-all communication of O(N 3) grid points. Vertical sweeps

in the Z direction are performed using the domain decomposition described above. Each

processor contains N_ × Nj/Py x Nk/Px grid points for sweeps in the X direction and

NjPy × Nj × Nk/Px points in the Y direction. ADI sweeps progress from left to right

and then right to left as indicated below with arrows representing communication steps.

Yi x N Yj gk .=. Yk
_--_yx Nk ¢:=V N, x _-_y x _--_x _--_y x Nj x _--_x

To compare the computational efficiency of the model using the parallel 1D Jacobi and 3D

ADI line relaxation schemes, a quasi-hydrostatic test case was run on an SGI/Cray Origin

2000 computer with sixteen 195 MHz R10000 processors each containing a 4 MB L2 cache.

81

The purposeof our test wasto determineif the communicationoverheadassociatedwith
the data transposition strategywouldadverselyaffect the computationalefficiencyasthe
numberof processorsis increased.A 120x 120x 35 grid at 2.5km horizontal resolution
with model lid set at 23 km was employedin a mesoscaleforecast over the British
Columbia lower mainland. The 30 hour forecastusing the MC2 model was run with
version 3.5 of the Rechercheen pr4vision num4rique (RPN) physicspackageincluding
radiation and stratiform condensationparametrisations. The integration consistedof
1800time steps of length At ---- 60 sec using both 1D and 3D preconditioners and the

results are summarized in Table 1 using single processor optimisation level 3 (described

in section 4).

PxxPy lxl 2x2 2x4 3x4 4x4

1D Jacobi 29:09 7:18 3:34 2:37 2:00

3D ADI 32:51 8:13 3:38 2:42 2:19

Table 1:MC2 execution time on SGI/Cray Origin 2000 (hrs:mins)

Despite the fact that the 3D ADI preconditioner results in a much faster convergence

rate for the GMRES solver, the overall model execution times are very close. Since the

grid aspect ratio AX/AZ for this problem is O(10), the 1D line Jacobi scheme is still

competitive. Moreover, the data transposition overhead appears not to adversely affect

performance up to 16 processors.

4. Single Processor Optimisations

To assess the impact of aggressive compiler optimisations on forecast accuracy, three

optimisation levels were identified for version 7.1 of the SGI MIPSpro compiler and

linker, targeted for version IP27 of the MIPS R10000 microprocessor. These compiler

options were tested with 195 MHz and 250 MHz versions of the processor on an Origin

2000 computer equipped with either 1MB or 4MB L2 caches.

Optimisation Level 1 (O1)

FFLAGS = -n32 -mips4 -rlO000

mpif77 -im -Iblas -o prog.f

mpirun -np 4 mc2.Abs

82

Optimisation Level 2 (02)

FFLAGS = -n32 -mips4 -rlO000 -02 -align32 \

-TARG:platform=ip27:processor=rlO000 \

-IPA:alias=ON:addressing=ON:opt_alias=ON \

-LNO:opt=l:optimize_cache=l:csl=32K:isl=32:assocl=2:mpl=lO:cs2=iM:Is2=128:\

assoc2=2:mp2=lO:cs3=512M:is3=O:is_mem3=ON:cs4=O \

-OPT:pad_common=ON:inline_intrinsics=ON:cray_ivdep=TRUE

mpif77 -IPA -multigot -im -iblas -o prog.f

fpmode performance fpmode spec mpirun -np 4 mc2.Abs

Optimisation Level 3 (03)

FFLAGS = -n32 -mips4 -rlO000 -03 -align32 \

-TARG:platform=ip27:processor=rlO000 \

-IPA:alias=ON:addressing=ON:opt_alias=ON \

-LNO:opt=l:optimize_cache=l:csl=32K:isl=32:assocl=2:mpl=lO:cs2=IM:Is2=128:\

assoc2=2:mp2=lO:cs3=512M:is3=O:is_mem3=ON:cs4=O \

-OPT:pad_common=ON:inline_intrinsics=ON:cray_ivdep=TRUE

mpif77 -IPA -mul_igot -Ifastm -Iblas -o prog.f

fpmode performance fpmode spec mpirun -np 4 mc2.Abs

A small number of manual code optimisations are applied to promote stride-1 access and

cache-blocking in the adiabatic kernel of MC2. In addition, optimised BLAS subroutine

libraries were specified at load time. In-line directives and options were applied to the

physical parametrisation package to handle aliasing and loop dependencies assumed by

the compiler in the case of some dynamically allocated arrays. The first optimisation level

(O1) instructs the compiler to use 32-bit arithmetic with the MIPS 4 instruction set on

the R10000 processor. The next level of optimisation (02) permits a restricted amount

of floating-point instruction re-ordering, 32-bit alignment, common block padding to pre-

vent cache thrashing and explicitly defines the memory hierarchy (cache size, line size,

associativity) of the target machine to aid in instruction scheduling. Interprocedural

analysis is applied to improve both instruction and data cache usage through code move-

ment. The most aggressive level of optimisation (03) permits floating-point instruction

re-orderings that could adversely affect the precision of certain computations such as di-

83

9:36:00

8:24:00

7:12:00

6:00:00

4:48:00

3:36:00

2:24:00

1:12:00

0:00:00

_01

02

...... 03

1 2 3 4

Number of Processors

o 0.96

._ 0.94

'_ 0.92

0.9

0.88

0.86
.o
_. 0.84

0.82

f

'02

_'03

I I

2 3 4

Number of Processors

Figure 1: Real run times for different optimization levels and processor configurations.

CPU times are shown in (a), and the improvement over the lowest optimization level

(O1) is shown in (b).

vision. Fast math libraries can also be employed and here again precision may be reduced

in exchange for speed.

In order to evaluate these optimisations in the context of a real-time mesoscale forecasting

system, the computational domain and related run-time parameters were taken from

daily runs of the University of British Columbia (UBC) ensemble forecasting system

(http://spirit.geog.ubc.ca/-model). Horizontal resolution is 10km at 60°N with the model

lid at 19km. The grid contains 120 x 70 points on 35 terrain-following levels, implying

the run is quasi hydrostatic with AX/AZ = 20. Vertical line Jacobi preconditioning is

therefore applied in all our tests. Initial and boundary conditions are obtained from a

coarse grid (AX -- 30km) MC2 run starting at 00UTC 27 November 1997. A 42 hour

integration requires 1260 time steps of length At = 120sec. A forecast initialized 06UTC

27 November 1997 was chosen as a benchmark since it is a representative mesoscale case

for the British Columbia lower mainland. In particular, it exhibits typical fall and winter

characteristics, including moist, south westerly flow at low levels, a persistent upper level

trough offshore, and dynamically forced precipitation enhanced by steep topography.

The dynamic forcing came from a weak surface cold frontal passage supported by a short

wave trough aloft. Upstream boundary wind speeds were on the order of 10ms -1 at the

surface.

Wall-clock execution times (including input/output) are shown in Figure la and per-

formance data for each optimisation level is presented in Tables 2 - 4. The machine

84

configuration is an Origin 2000with four 195 MHz R10000processorsequipped with 1
MB L2 cache.Flop countsare derivedfrom hardwarecountersavailableon a NEC SX-4
vector supercomputerat the CanadianMeteorologicalCenter (CMC). Note in particular
that in all casesthe L2 cacheutilisation is below90% and that single processorperfor-
mance doesnot exceed65 Mflops/sec. Figure lb displays the percentageimprovement
in wall-clock time (up to four processors)for optimisation levels02 and O3 compared
to level O1. The plot confirms that optimization levels 02 and O3 produce similar
improvementsfor all processorconfigurations.

x lxl lx2 lx3 2x2

Wallclock 31395 16666 11169 8034

User 30975 16339 10828 7879

MFLOPS/sec 53.6 101.5 153.2 210.6

MFLOPS/sec/PE 53.6 50.8 51.1 52.6

L2 hit rate 0.843 0.880 0.881 0.892

Table 2: Optimisation Level O1, 195 MHz R10000 + 1 Mb L2 cache.

x_ ixl Ix2 Ix3 2x2

Wallclock 28597 14593 9707 7420

User 28223 14341 9449 7252

MFLOPS/sec 58.8 115.7 175.6 228.8

MFLOPS/sec/PE 58.8 57.8 58.5 57.2

L2 hit rate 0.845 0.886 0.893 0.891

Table 3: Optimisation Level 02, 195 MHz R10000 H- 1 Mb L2 cache.

x_ Ixl Ix2 Ix3 2x2

Wallclock 26862 13919 8769 7099

User 26828 13679 8578 6935

MFLOPS/sec 61.8 121.3 193.4 239.2

MFLOPS/sec/PE 61.8 60.6 64.5 59.8

L2 hit rate 0.838 0.885 0.893 0.894

Table 4: Optimisation Level O3, 195 MHz R10000 + 1 Mb L2 cache.

85

x lxl lx2 1x3 2x2 2x4 3x4

Wallclock 21360 10813 7165 5416 2841 2035

User 21180 10740 7051 5344 2744 1949

MFLOPS/sec 78.3 154.5 235.3 310.4 604.6 851.2

MFLOPS/sec/PE 78.3 77.2 78.4 76.2 75.6 70.9

Table 5: Optimisation Level 03, 195 MHz R10000 + 4 Mb L2 cache

The benchmark case described above has also been run on an Origin 2000 with up to

sixteen 195 MHz R10000 processors configured with 4 MB L2 cache and the results are

reported in Table 5. A significant increase in the cache utilisation (over 97%) is obtained

when moving to the 4 MB L2 cache and per processor performance increases accordingly

to just under 80 Mflops/sec or 20% of peak when using optimisation level O3. With

the recently released 250 MHz R10000 chip, a further 20% improvement in per processor

performance has been observed in our benchmarks. In particular, MC2 achieves over 105

Mflops/sec on this processor in combination with the 4 MB L2 cache, although L2 cache

utilisation drops back down to 92%. For comparison, the 10km benchmark was run on a

Fujitsu AP3000 with 2 processors per SMP node. This machine is based on the 300 MHz

SUN UltraSparc II processor with 2 MB L2 cache, a proprietary high-speed memory

architecture and 2D torus interconnect. Compiler options are given below (including the

memory hierarchy specification) and performance data is summarized in Table 6.

FFLAGS = -04 -dalign -xarch=v8plusa -xchip=ultra \

-fsimple=2 -xdepend -xlibmil -xlibmopt -xsafe=mem \

-xcache=16/32/4:2048/32/l

PxxPy 1xl 1x2 lx3 2x2 2x4

Wallclock 25163 12706 8820 6905 4054

User 24853 11986 8071 6152 3023

MFLOPS/sec 66.8 138.4 205.6 270.0 548.8

MFLOPS/sec/PE 66.8 69.2 68.5 67.5 68.6

Table 6: Fujitsu AP3000, 300MHzAP3000+2MB L2 cache

86

5. Meteorological Results

a. Evaluation Methods

The effect of RISC compiler and run-time optimizations on the accuracy of high resolution

mesoscale forecasts is still a largely unexplored subject. One possible way of studying

these effects is to generate an ensemble of forecast runs, regarding optimisation as a

possible source of errors or perturbations. Given three optimisation levels and four pro-

cessors, a simple way to produce an ensemble is to run the same meteorological test case

12 times, varying optimization levels and processor configurations, as described above.

The 12 runs comprise an ensemble and standard analysis techniques can reveal error

growth and forecast spread as a function of optimization and floating-point instruction

re-ordering.

Forecast spread, rather than error values, will be emphasized for two reasons. First, a

control run to characterize deterministic model error is not available. In ensemble fore-

casting, a control run is often the categorical forecast, initialised with a best guess analysis

and perturbing this analysis gives initial conditions for the other ensemble members. En-

semble forecasters then look for forecast spread and a reduced ensemble-averaged error.

Looking for error reduction will not provide insight into the problem at hand. Although

compiler optimisations can be considered as perturbations, the analogy should not be

extended too far since the initial conditions are not perturbed. A single processor run

without any optimization could be taken as the control run since it may be what the

model developers intended, but given codes of such complexity this is difficult to quan-

tify. Second, one case study can not determine the statistical properties of the ensemble

in a robust sense. Thus, it is unwise to select a top performer in this experiment, or to

average the results looking for an improvement. However, significant deviation of one

group of forecasts from the others indicates that caution is warranted.

Each ensemble member is initialized identically and common boundary conditions are

applied throughout the 42h integration period. The 00h forecasts deviate from each

other slightly because grid staggering and destaggering require calculations that are han-

dled differently depending on optimization and processor configuration. Boundary value

determination is subject to the same errors and by examining the spatial distribution of

forecast spread such effects can be quantified. To evaluate the error in each run, model

forecasts of temperature, mean sea level pressure (MSLP) and 12h accumulated precip-

itation are compared with surface observations from weather stations operated by the

Canadian Atmospheric Environment Service (AES). Observation error was not consid-

87

C

8-

[-
oo

o_

G

.o

8-
E

G
v

-n

I I I
PEI

I I I
0 12 24 36

Forecast time (h)

I I I
PE2

i "_" a

I I I
0 12 24 36

Forecast time (h)

8.
E

8

r/3

7 I I I
PE3

6

4

2 I I I

0 12 24 36
Forecast time (h)

7

6

+5
t.-

2

I I I

I i i
0 12 24 36

Forecast time (h)

2
.1

_ 2
e_
.1

,-1

PEI I I ,_

t • e

I I I
12 24 36

Forecast time (h)

3

PF"21 I ,_,,

e_ w l
• e L

1
0 12 24 36

Forecast time (h)

3

pE31

t I I I
0 12 24 36

Forecast time (h)

2 f/•

i I l i
0 12 24 36

Forecast time (h)

,90
+ ,+or

r / 'i ,+or /
@

._ 90
a. 70

50
0 12 24 36

Forecast time (h)

t_

a_

.o

t_

190

170

150

130

e.

.o

tx_

110

90

70

50
0 12 24 36

Forecast time (h)

190

170

150

130

110

90

70

50

190

_ 170

m 150

130

.__ 90

70

50

_ PE3 I I

- _

0 12 24 36
Forecast time (h)

Pd I

0 12 24 36

Forecast time (h)

Ol --- 02 03

Figure 2: RMS error at each forecast hour for surface temperature (column 1), MSLP

(column 2) and 12h accumulated precipitation (column 3). The legend indicates curves

for 3 optimization levels and the number of processors employed is shown on each plot.

88

ered and the observations are subject to AES quality standards. A cubic polynomial is

used to interpolate temperature, MSLP, and precipitation values from the model grid

to observation sites. Errors are evaluated by averaging over eve_ available station site

at each 6h interval. At least 50 stations were available for verification at these times.

RMS results are therefore the average RMS over all the stations reporting within the

model domain. Although the model domain is three dimensional, a surface comparison

can identify significant discrepancies in the forecasts. The results will not provide infor-

mation about spatial distribution of errors, but will show the error differences and thus

average forecast differences.

b. Ensemble Results

Results for the entire ensemble are shown in Figure 2. It is clear that at forecast times

greater than 6 hours, every run with full optimization (03) significantly deviates from

the rest of the ensemble with respect to MSLP and temperature. Because error spreads

between different processor configurations are too small to observe on these plots, each is

shown on an individual plot. These are negligible compared to the deviations present in

the 03 runs. The decrease in temperature error over the first 6h of forecast is a result of

the improved resolution from the initial conditions specified at 30km to the 10km model

domain. Precipitation spread is negligible when compared to the total model error. The

maximum at 36h is a property of only this forecast and would disappear with several

forecasts over different time periods.

The spatial distribution of forecast spread can be understood by looking at the station

and gridded results. Figure 3a and b show the maximum temperature and MSLP dif-

ferences between any two forecasts after 42h of integration, interpolated to station sites.

Temperature differences range from I°C near the upstream boundary to 4°C near the

downstream boundary, with a general increasing trend from west to east. A similar trend

is evident in the MSLP differences, which range from 0mb in the southwest to 4mb in

the northeast part of the domain. Thus, numerical errors accumulate for air parcels with

longer residence times in the domain.

Figures 3c and d, show the difference in gridded fields between ensemble members 1

(O1PE1) and 12 (O3PE4), also after 42h of integration. For comparison with Figures 3a

and b, surface temperature and MSLP differences are shown. These two members are

responsible for many (but not all) of the maximum differences at station sites. The

increasing differences toward the downstream boundary are clear. It is worth noting that

the spatial distribution of the differences does not show this property at the 00h forecast

time. Rather, the differences are evenly distributed and resemble numerical noise. The

89

a :: i: ¸ .: • •

............. ,_ 42.....

.... " ?' 2 :

3
0 4

z 2 ,\ '3 3

I _o_._o _---_o_ ---_ i

Maximum Temperature Differences Maximum MSLP Differences

7 C : _ ! :' _"z:

,,._' _ '"_ t
.: I_ _ _: _

¸

Surface T Differences (Member I - Member IZ) MSLP Differences (Member ! - Member 12)

Figure 3: Spread between ensemble members. The maximum forecast spread in surface

temperature (°C) (a) and MSLP (mb) (b). Gridded spreads between ensemble members

1 (O1PE1) and 12 (O3PE4) for temperature (c) and MSLP (d) are also shown.

9O

featuresshownhere developthrough the forecastperiod. The differencesin the gridded
fields approachzero at all the boundariesexceptthe outflow boundary. This is evidence
that the boundary formulation is not significantly affectedby the different optimization
levels and processorconfigurations. Error must have time to accumulateduring the
integration and the commonboundary conditions result in small boundary differences
evenat the end of the forecast.

6. Conclusions

Our performancestudiesindicate that fully 3D implicit methodsbasedon minimal resid-
ual Krylov iterative solversand line relaxation preconditionerswork well on distributed-
sharedmemory architecturessuchasthe SGI/Cray Origin 2000. Perhapsthe best way to
evaluate the impact of codeoptimisation strategiesfor RISC microprocessorson atmo-
sphericflow simulationsis by usingtheoreticaltest caseswith analytic or knownsolutions.
In suchcases,a lossof precisioncan be isolatedand easilycorrected. With a fully con-

figured atmosphericmodel interfacedto complexphysicalparametrisation packages,the
task is more difficult. One possible approach is to view aggressive compiler optimisations

as a possible source of floating point errors or perturbations of the initial and boundary

conditions. Ensemble forecast techniques can then be applied to evaluate if a trade-off

between accuracy and performance is within acceptable bounds.

It must be emphasized that it is impossible to know a priori which level of optimization is

most accurate since this is code and platform dependent. However, significant deviations

over several forecasts indicates caution should be exercised when applying optimizations.

Such effects should be quantified and closely examined in either an operational or research

environment. The results shown in Figure 2 and Figure 3 suggest that compiler and run-

time optimization can have a significant impact on short range forecasts. RMS errors

can deviate by more than 25% of the total error for surface temperature and MSLP. The

O3 error is at times less than the O1 and 02 error and thus the only way to characterize

accuracy is by running similar ensembles over many forecast periods. Obtaining a 'best'

forecast from one case is unwise. Error spreads of similar magnitude will likely occur in

many other meteorological cases, but the value of the error and the rank of each ensemble

member will vary.

Forecasting implications of these differences should not be ignored. Both the MSLP

and surface temperature differences are large. For example, four degree temperature dif-

ferences are well above the accuracy required to determine precipitation phase (solid or

91

liquid) in many instances.This cantranslateto thousandsof dollarswastedby poor plan-
ning for industry, agriculture and governmentagenciesthat dependon accurateweather
information. A 4 mb MSLP differencewill affect wind forecasts,which are equally as
important. Although only surfaceimpact is addressedhere, the dependencyof surface
parameterson the upper air conditions suggesteffectsaloft are just as great. Further-
more, the nonlinearnature of the atmosphereand further accumulationof optimization
errorswill causethe differencesin forecaststo growwith forecastduration. Thus, similar
analysesof mediumrangeforecasts(3-10days)wouldshowa muchlargerspreadbetween
forecasts,due to compiler optimization.

Acknowledgements

The authors would like to thank Piotr Smolarkiewicz from NCAR/MMM for his interest

and encouragement to find better preconditioners for minimal residual Krylov solvers.

An A-grid version of a line Jacobi scheme was first tested in the EULAG model [6]. In

the near future we also hope to benchmark MC2 on the NCAR HP/Exemplar SPP 2000

DSM with support from Steve Hammond and SCD. We would also like to thank SGI,

Fujitsu and the Canadian Meteorlogical Center for providing dedicated computer time.

92

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. C. Eisenstat, H. C. Elman, and M. H. Schultz. Variational iterative methods for

nonsymmetric systems of linear equations. SIAM Y. Numer. Anal., 2 (1983), pp.

345-357.

T. Gal-Chen and R. C. Sommerville. On the use of a coordinate transformation for

the solution of the Navier-Stokes equations. J. Comp. Phys, 17 (1975), pp. 209-228.

Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Star. Comput, 7 (1986), pp.

856-869.

W. C. Skamarock, P. K. Smolarkiewicz and J. B. Klemp. Preconditioned conjugate-

residual solvers for Helmholtz equations in nonhydrostatic models. Mon. Wea. Rev.,

125 (1997), pp. 587-599.

P. K. Smolarkiewicz and L. G. Margolin. Variational solver for elliptic problems in

atmospheric flows. Appl. Math and Comp. Sci., 4 (1994), pp. 527-551.

P. K. Smolarkiewicz and L. G. Margolin. On forward-in-time differencing for flu-

ids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows. Atmos.

Ocean. , Special Vol. XXXV, no. 1, (1997), pp. 127-152.

P. K. Smolarkiewicz, V. Grubisid and L. G. Margolin. On forward-in-time differenc-

ing for fluids: Stopping criteria for iterative solutions of anelastic pressure equations.

Mon. Wea. Rev., 125 (1997), pp. 647-654.

S. J. Thomas, A. V. Malevsky, M. Desgagn_, R. Benoit, P. Pellerin and M. Valin.

Massively parallel implementation of the mesoscale compressible community model.

Parallel Computing, 23 (1997), 2143-2160.

S. J. Thomas, C. Girard, R. Benoit, M. Desgagn_ and P. Pellerin. A new adiabatic

kernel for the MC2 model. Atmos. Ocean., to appear (1998).

93

94

Author: Giri Chukkapalli

San Diego Supercomputer Center
P.O. Box 85608

San Diego, CA 92186-5608

gift @sdsc.edu

A Theoretical and Experimental Analysis of Parallel Complexity of Weather and Climate Algorithms using
the Shallow Water Benchmark Suite

In this paper, we evaluate the parallel complexity of weather and climate algorithms with the help of the governing

equations and the initial-boundary conditions (I.B.V.P). We define a true measure of simulation efficiency which

encompasses various partial measures of efficiencies such as parallel speedups. With this definition in mind, we

evaluate the advantages and disadvantages of various spatial and temporal discretization schemes in mapping the

weather and climate dynamics onto the massively parallel computers. Using this analysis, a conservative, semi-

implicit, weak Lagrange-Galerkin (WLG) Finite Element (FE) scheme on unstructured spherical triangular grid is

developed to solve the well-accepted shallow water benchmark problem. Results from various benchmark tests

show that the current algorithm is sequentially efficient and accurate. The code is parallelized both in shared

memory (P4) and message passing paradigm (MPI). The parallel computation partitioning strategy is designed to

achieve good load balance and minimize interprocess communication. By overlapping communications and

computations, the communication latencies resulting from the Lagrange-Galerkin algorithm are minimized, thereby

achieving good parallel speedups. Results from a wide range of parallel platforms including Cray T3E(260), HP

Exemplar(256), IBM SP2(128), Berkeley NOW(100), SGI power, challenge(32) and KSRl(32) show that the

present parallel algorithm is efficient, portable, and scalable. Using a timeline analysis of the present algorithm, we

identify the reasons for parallel performance degradation and provide possible remedies for minimizing it. We
address the design issues that need to be considered for the code to be efficiently portable.

95

96

A Scalable Version of the Navy Operational Global

Atmospheric

Prediction System Spectral Forecast Model

Thomas E. Rosmond

Naval Research Laboratory, Monterey, California

7 Grace Hopper Ave

Stop 2

Monterey, Ca 93943-5502

rosmond@nrlmry.navy.mil

Voice: +1 408 656-4736

Fax: ÷1 408 656-4769

97

1. Introduction:

The navy operational global atmospheric prediction system (NOGAPS) is the heart of

the Fleet Numerical Meteorological and Oceanographic Center (FNMOC) operational

NWP support to all branches of the Department of Defense. The Naval Research

Laboratory (NRL) is responsible for NOGAPS design and computer implementation.

NOGAPS has been operational at FNMOC since 1982 and has been through several

computer system upgrades and design changes during that time. The spectral forecast

model component of NOGAPS [1] is similar in formulation to global models run at

other major operational NWP centers around the world. Operationally it runs multi-

tasked on a Cray C90 using 10-15 processors with a sustained performance of 400

Mflops/processor. The operational resolution is currently T159L30. In addition to the

operational application NOGAPS is run by NRL scientists at a variety of lower res-

olutions for coupled atmosphere/ocean modeling research, data assimilation studies,

long-term integrations such as AMIP, and singular vector/adjoint model research.

Price/performance considerations are driving many supercomputer applications away

from expensive vector architectures and toward scalable architectures built around

commodity-based components. Numerical weather prediction models such as the

NOGAPS spectral forecast model is an example of such an application. FNMOC

is currently planning a switch to a scalable architecture for their primary computa-

tional resource over the next 2-3 years, and NOGAPS is the most prominent applic-

ation to be ported to the new system. In anticipation of a new operational platform

for NOGAPS, a distributed memory NOGAPS based on message passing (MPI) has

been developed and is being tested and optimized. In part 2 of this report the design

criteria and priorities of the new code are discussed. Part 3 describes the design of

the computationally intensive spherical harmonic transforms. Part 4 discusses some

overall model performance issues and load balance problems. Part 5 presents some

conclusions, lessons learned, and future plans.

2. Design objectives:

Because of uncertainty in the commercial marketplace for the new architectures, port-

ability among candidate systems is a high priority in the new code. Single node

performance is also being emphasized because diabatic processes dominate the com-

putational cost of NOGAPS, and these are embarrassingly parallel. An important

consideration of the new code is to retain as much of the current C90 vector code as

possible, for two reasons: (a) we do not want to recode the 30-40 thousand lines of

code that make up the model's diabatic processes, and (b) multiple processor shared

memory "nodes" are likely to be part of many next- generation systems, and existing

parallel vector codes should port gracefully to them. Specifically, this means we pre-

serve the "long-vector" legacy of the past as much as possible, although the code has

runtime granularity factors that allow control of actual on-processor array sizes and

loop lengths. We believe the potential performance penalties this strategy will impose

on cache-based processors will be minor.

98

The first application of the scalableNOGAPS will be as a benchmarkcode for a
FNMOC procurement. Therefore portability acrossa wide spectrum of potential
platforms is essential. Messagepassing(MPI) is the obviouschoiceto maximizethis
portability. The proposed OpenMP standard for on-nodeshared memory architec-
tures is being anticipated, but not yet implemented. The ultimate goal is to have
a single codewhich can run as a pure MPI application on a single processor/node
MPP platform, a hybrid MPI/OpenMP applicationon a distributed sharedmemory
system,or as a purely sharedmemory applicationsimilar to the current C90 paral-
lel/vector code. The main motivation for this is configurationmanagement;wecannot
maintain separateNOGAPS codesfor three different architectures. Someoverhead
in computationalcost and memory is inevitablewith sucha generalizedcode,but we
arepreparedto accept this.

A
(D

LU

ttt

F-
...I
.J

64

32

16

2

0.5

T3E SPECTRAL TRANSFORM

-,..=. I =,-,. I

" "......... "................... LM=32,1M=256

.......... "............. LM=a2,1M=364

....... _'s=._22 t:_=,-'A.':=
"-.....=

......... LM'-_2;lM'--'896----21

..... LM=32,1M=1024 ::::

0.25
I I

16 32 64 128
N-PROCS

Figure 1: Spherical harmonic transforms on the T3E, showing scaling performance

for a variety of spectral resolutions and processor numbers.

3. Spherical harmonic transforms:

Other authors [2, 3] have described parallel versions of the spherical harmonic trans-

form. A common approach is the transpose method, where all communication is

confined to matrix transposes that organize data so that all computation can be "on-

processor", ensuring bit reproducibility of results for varying numbers of processors,

99

a vital property for model validation and debugging.The NOGAPS transforms are
similar in designto thoseof other groups,but we havecodedthem with severaldif-
ferent MPI communicationmodesto allow performancecomparisonson a variety of
platforms. Specificallywe havecomparedexplicit send/recvmatrix transposesusing
combinationsof blocking, unblocking,synchronous,and non- synchronous MPI, as

well as the mpi_alltoall collective function. Fig. 1 shows some of these results for a

range of spectral resolutions and processor numbers on the Cray T3E. Fig. 2 shows

a breakdown for one spectral resolution (T213), showing how the FFT, Legendre

transform (BLAS matrix multiply), and communication scale for the same range of

processor numbers.

64

32

16

cD
(J
"' 8

-J 4_J

T3E IM=640
I i

............ II_+blas

.......... ill ffl+blas+comrn -

...........................ili21111";illl-2111...................
i

R

i

.... _.....,,..,_

0.5
16 128

...... ,,,.,

i i
32 64

N-PROCS

Figure 2: FFT, Legendre transform(BLAS SGEMM), and communication times for

T213L32

4. Overall model performance:

Table 1 shows NOGAPS running times for both the T3E and Origin 2000 for a range

of processor numbers. The results show relatively poor scaling going from 60 to 120

processors on the T3E and also from 30 to 60 processors on the 02000. This was

largely due to poor load balancing, primarily in the cumulus parameterization and

longwave radiation, and terrible scaling for the communication, particularly on the

02000. The latter problem is clearly a top priority as we continue development of the

new model. The load balance problems are solvable with a more elaborate interleaving

of latitude and longitude bands in the Gaussian grid point fields.

100

Table 1: T3E/O2K T159 NOGAPSperformance(48hr forecast,time in secs)

T3E/p30 T3E/p60 T3E/pl20 O2K/p30 O2K/p60
Total: 3780 2100 1400 4589 3242
Diabat: 1357 790 575 1171 905

Cumulus: 366 196 150 226 125

Lwrad: 100 78 88 167 297

Swrad: 169 86 44 98 48

Comtrans: 633 358 234 1295 1039

Comlwrad: 16 35 64 124 273

Table 2 shows single node performance for a quite small (T21) NOGAPS, chosen

to fit on the relatively small T3E on-node memory. The model is essentially the current

operational code, highly vectorized for the C90, although at this resolution the average

vector lengths are quite short. Perhaps the most conspicuous result is the relatively

poor performance of the T3E relative to the DEC ALPHA. In spite of a 50% faster

processor speed, the smaller cache of the T3E ALPHA processor cause substantially

poorer performance then the DEC.

Table 2:T21L18 NOGAPS single node performance (24 hour fcst, time in secs)

ALPHA 300 SMP ALPHA 450 T3E 02000 Cray C90

Total: 106.4 192.8 115.6 32.0

Trans: 9.7 25.6 12.0 3.6

Diabat: 91.4 162.0 100.1 26.2

Cumulus: 9.4 12.4 13.2 3.9

Lwrad: 27.2 56.4 32.7 6.7

Swrad: 23.4 30.0 22.5 5.4

5. Summary:

We have begun the process of converting a large operational NWP model code, optim-

ized for a parallel vector architecture, to a yet to be determined scalable architecture.

The code is as general as possible to ensure reasonably graceful porting to a variety of

candidate architectures and programming models. Some inefficiencies are inevitable

with this philosophy, but if we understand the reasons for these problems, we believe

future refinements of the model will eliminate them. An important point to be made

is that no effort has yet been made to redesign the model for more optimum perform-

ance on a distributed memory, cache-based microprocessor system. Specifically, the

model carries its time level histories in spectral space, rather than Gaussian grid point

space. This conserves memory, but generally requires more transform operations per

time step. On shared memory vector platforms such as the C90 this is an attractive

design strategy, since transforms are relatively cheap, but on distributed memory ar-

101

chitecturesthere is a considerablepenalty in both computationaland communication
costwith this approach.The modelalsopreservesa rich complementof in-line global
diagnosticswhich are critical for monitoring meteorologicalperformancebut would
be an expensiveluxury in a scalableproductioncode.

One of the greatestchallengesof moving to thesescalablearchitecturesis accepting
the fact that thesesystemsarenot all-purpose,and manyof the "whistles and bells"
that our modelsnow contain will haveto be removed,or at leastmadeoptional. This
haspotentially important impactson the user-friendlinessof many modelswhich are
often run by relatively naiveusers.NOGAPS is sucha model, and we cannot ignore
the implications on softwaredesignand configurationmanagement.

References

[1] Hogan, T. F. and T. E. Rosmond, 1991: The description of the Navy Global

Operational Prediction System's spectral forecast model. Mon. Wea. Rev. 119,

1786-1815.

[2] Foster, I. and P. Worley, 1993: Parallelizing the spectral transform method: A

comparison of alternative parallel algorithms. Proceedings of the 1994 Scalable

High Performance Computing Conference, Knoxville, TN, May 23-25, IEEE, Los

Alamitos, Ca. 726-733.

[3] Barros, S. R. M., D. Dent, L. Isaksen, and G. Robinson, 1995: The IFS Model

- Overview and parallel strategies. Coming of Age: Proceedings of the Sixth

ECMWF Workshop on the Use of Parallel Processors in Meteorology. Eds. Hoff-

man, G-R., and N. Kreitz. World Scientific, Singapore. 303-318.

102

Navy Weather and Oceanography in the Next Century - A New

Challenge in Numerical Modeling

K.D. Pollak and C.J. Mauck

Fleet Numerical Meteorology and Oceanography Center

7 Grace Hopper Avenue, Stop 1

Monterey, CA 93943

E-mail: kpollak_fnmoc.navy.mil
+1 408 656-4335

Fax: +1 408 656-4489

ABSTRACT

The Fleet Numerical Meteorology and Oceanography Center (FNMOC) in Monterey

currently runs a suite of meteorological and oceanographic (METOC) analysis and

forecast models on Cray C90 and J90 malnfi'ames. These models, which provide

METOC support throughout the Department of Defense, are becoming obsolete as their

resolutions and physics packages are limited by current operational computer hardware

architecture. The Navy also faces the challenge of implementing more skillful models.

Fortunately for the Navy, the science and technology of numerical modeling has kept

pace with computer hardware. The chief impediment to instituting improved models is

acquiring a larger computational capability in which to run them.

FNMOC is now formalizing plans to replace its aging vector processing architecture with

a scaleable system. This new system will provide an affordable, phased approach to meet

FNMOC's new computational requirements. Next generation models executing on this

replacement system will provide FNMOC's customers with more skillful and longer

range METOC forecasts. Improvements will be the result of better physics, higher grid

resolutions, and full coupling of air, ocean, wave, and ice models.

INTRODUCTION

Mission

The mission of FNMOC is "to combine innovative technology with the best available

science in order to provide the best weather and oceanographic products, data and

services to the operating and support forces of the Department of Defense, anywhere,

anytime" (FNMOC [1]). FNMOC provides these services continuously in order to

increase safety of forces and to optimize the use of platforms, weapons, sensors and
facilities.

Keys to its mission are responsiveness and quality. To do this, FNMOC maintains its

competitive abilities by applying better physics to models on a regular basis. Better

103

physics usually means more calculations are required, resulting in longer model run

times. Model improvements are also made by decreasing the computational grid spacing,

allowing a model to resolve smaller scale features in the ocean or atmosphere. Reducing

a model's grid spacing while maintaining the same geographic domain has two affects: it

increases the amount of computer memory required, and it increases model run time. The

capacity of a given computer architecture thus effectively limits the size and number of

models that can be run.

Over the life cycle of FNMOC's current Cray/workstation computer center, there has

been a metamorphosis of sorts. As models were implemented and incrementally

improved, the host computers were also upgraded with better operating systems, more

memory, and additional processors. There is a point though when hardware

improvements are either not possible or no longer cost effective. As FNMOC's hardware

system becomes saturated and future improvements are no longer economically viable,

the entire hardware/software system will become static. Hardware vendors in pursuit of

newer technology may no longer be willing to support "older" systems. The current

configuration at FNMOC will thus come to the end of its life cycle. To remain

competitive, a computing capability with more memory and better technology will be
needed.

CAPABILITIES

The product list in Table 1 shows examples of tailored applications that use FNMOC

meteorological and oceanographic products. Model fields are also transferred

electronically directly to customers for use onboard ships, at regional Navy forecast

centers, and other government agencies.

Product Required Input

Optimum Aircraft Routing Services Meteorological and Oceanographic Model Products

Optimum Track Ship Routing Services Meteorological and Oceanographic Model Products

Tropical Storm Predictions and Warnings Meteorological and Oceanographic Model Products

High Winds and High Seas Warnings Meteorological and Oceanographic Model Products
Precipitation Products Meteorological Model Products

Refractivity Conditions and Ducting Ranges Meteorological Model Products
Underwater Acoustic Support Oceanographic Model Thermal Slructure Products

Support Low Level Atmospheric Release Meteorological Model Winds
Predictions

Search and Rescue Oceanographic Model Surface Currents, Winds

Table i. Warfighter Support.

104

EXISTING HARDWARE

AND SOFTWARE CONFIGURATION

HARDWARE CONFIGURATION

FNMOC's current computer hardware system is anchored by a sixteen processor Cray

C90 with 256 Mwords of memory. The C90 is complemented by two eight-processor

Cray J90s, each with 512 Mwords of memory. One of the J90s is used as the primary

relational data base management system server, while the second provides a bridge

between the C90 and peripheral systems, runs applications and hosts a capability for

running lower resolution METOC models in a backup mode. Seventy-one Sun

SparcStations round out FNMOCrs computing environment. These workstations perform

a myriad of functions including: communications, data base servers, applications, and

development. These Sun computer systems range from 12-processor, 1024 Mbyte

SPARCCenter 2000Es, to SPARC 10 desktop workstations. Figure 1 depicts the

FNMOC computer architecture.

200 MBps

256 MWSSD &82 GB DESKStorage

CRA_
J916,_-512

STK9490
Powderhorn

2,4 TBTape Storage

CRAY

J91 £:#8-512

GIGA RING

STK9310

Powde rho rn

4.8 TB Tape Storage

DPS

Figure 1. FNMOC Computer Architecture. DEVOFS is the developmental file server, OFS is the
unclassified operational file server, and OFSC is the classified operational file server. All three are

SparcStations. DPS, the distributed processing system, is a suite of workstations which provide the
primary communication interface to customers.

105

MODEL SOFTWARE DESCRIPTION

The major models now operational at Fleet Numerical are briefly described here.

Meteorological Models

NOGAPS - The Navy Operational Global Atmospheric Prediction System (NOGAPS)

model is a global spectral numerical weather prediction model (Hogan and Rosmond [2]).

NOGAPS employs state-of-the-art data quality control, data assimilation, nonlinear

normal mode initialization, and atmospheric physics to produce skillful medium-range

weather forecasts. NOGAPS generates several thousand operational fields per day,

including surface winds and heat fluxes to drive ocean models and lateral boundary

conditions to support regional atmospheric models. In one way or another, NOGAPS

output supports nearly every operational application run at Fleet Numerical. It is the only

global meteorological model operated by DoD. In its 159 spectral wave configuration

with 18 levels, NOGAPS makes operational forecasts to 144 hours twice daily. The

model then runs in a 63 spectral wave configuration to 240 hours. This configuration

uses approximately 80 million words of memory and requires around 12 minutes of wall

time per forecast day, though this requirement depends on the time step being used and

on competition for resources.

NORAPS - The Navy Operational Regional Atmospheric Prediction System (NORAPS)

model is a relocatable regional primitive equation numerical weather prediction model

(Hodur [3]). NORAPS is run at higher horizontal and vertical resolution than NOGAPS

for areas of high DoD interest. It can be initialized either from its own high-resolution

nowcast, or from the coarser resolution NOGAPS nowcast. It uses lateral boundary

conditions provided by NOGAPS, and generally provides a more accurate and detailed

depiction of mesoscale weather features than NOGAPS, particularly in areas affected by

the land surface. NORAPS currently runs in one of three resolutions, 45 kin, 20 kin, and

a 15 km resolution nest within a 45 km resolution area. Currently, FNMOC rtms six

NORAPS areas operationally (2-45/15 km, 2-45 kin, 2-20 kin). The 45 km resolution

areas use around 40 million words of memory and require 35 minutes to complete a 48

hour forecast.

COAMPS - NORAPS is being replaced with the Coupled Ocean/Atmosphere Mesoscale

Prediction System (COAMPS) model (Hodur [4]). The atmospheric component of

COAMPS features triply-nested grids down to resolutions of a few kilometers, non-

hydrostatic dynamics, explicit moisture physics and aerosols, and improved data

assimilation. The underlying and fully coupled oceanographic component of COAMPS

will eventually combine the functions of OTIS (ocean thermal data assimilation), POM

(ocean thermal and circulation prediction) and WAM (ocean wave prediction) to provide

for fully interactive two-way coupling between ocean and atmosphere (Clancy and Hodur

[5]). With lateral boundary conditions provided by FNMOC global models, COAMPS

provides the high-resolution, relocatable and fully integrated METOC prediction

capability required for seamless support of the sea-air-land operations implied by the

106

Navy's new missions. Currently, FNMOC runs two COAMPS areas,Europe and

Southwest Asia. The model for each area is characterized by an 81 km outer grid, and

inner grids of 27 km and 9 km. The Southwest Asia (larger area) uses around 100 million

words of memory and requires approximately 2.5 hours to complete a 48 hour forecast.

FNMOC runs each COAMPS area twice daily.

EFS - The Ensemble Forecast System (EFS) is implemented with a coarse horizontal

resolution version of NOGAPS (Pauley et aI. [6]). In this state-of-the-art approach,

multiple forecast runs are made from slightly differing initial conditions, with each

obtained by means of a process that "breeds" the growing error modes that dominate

forecast error (Toth and Kalnay [7]). By averaging the resulting multiple forecast

realizations (and hence tending to cancel out the effect of the growing error modes), a

forecast is achieved with higher skill than any single forecast produced even with a higher

resolution version of the model. In addition, the spread of forecast realizations allows an

estimate to be made of the range of forecast error, which can vary substantially from

week to week depending on the global-scale flow patterns in the atmosphere.

GFDN Tropical Cyclone Model - The Geophysical Fluid Dynamics Laboratory (GFDL)

Tropical Cyclone Model is implemented at Fleet Numerical to provide track and intensity

predictions for hurricanes and typhoons. The model is described by Kurihara et al. [8],

and includes a moving triply-nested grid, second order turbulence closure, convective

adjustment, infrared and solar radiation, and parameterization of land surface

characteristics by vegetation type. The model is initialized from a special analysis

constructed by removing the tropical cyclone component from the NOGAPS analysis and

replacing it with a synthetic vortex generated from the observed location and structure of

the storm. Forecast lateral boundary conditions for the Tropical Cyclone Model forecasts

are provided by NOGAPS.

Oceanographic models

WAM - The Third-Generation Wave Model (WAM) contains state-of-the-art nonlinear

physics for forecasting the evolution of directional wave energy spectra and derived wave

height, period and direction fields (WAMDI Group [9]). WAM is run in both global

coarse-resolution and regional high-resolution implementations at Fleet Numerical. The

regional implementations generally include shallow water physics to account for

refraction and bottom friction effects, although these formulations begin to lose validity

at depths shallower than about 30 meters. WAM uses wind stress forcing provided by

either NOGAPS, NORAPS or COAMPS. WAM provides crucial support for Optimum

Track Ship Routing (OTSR), the issuance of high-seas warnings, and many other

applications. There are currently one global and four regional WAM areas that run on the

c90, and five areas running on a j90. Global WAM, the largest of the all areas, requires

70 million words of memory and takes about 45 minutes of wall time for a 5 day forecast.

OTIS - The Optimum Thermal Interpolation System (OTIS) is the primary ocean thermal

nowcast model used at Fleet Numerical (Cummings [10]). Both global coarse-resolution

107

andregionalhigh-resolutionversionsarein use. All of theOTISimplementationsusethe
Optimum Interpolation (OI) techniqueto assimilate real-time data. Regional OTIS
furtheremployswater-mass-basedrepresentationof oceanthermalclimatologyandocean
front andeddy"featuremodels"to produce"synthetic"datato supplementthe"real" data.
This allows a detailedand accuratedepictionof subsurfacethermalstructureassociated
with frontsandeddieswhosesurfacepositionsaredepictedin operationaloceanfront and
eddy analysesderived primarily from satellite imagery by analysts at the Naval
OceanographicOffice. OTISrunsglobally for surfaceonly analysis,andseparatelyfor a
full surfaceto 5000meters(3-D) analysis. Thereare threeregionalareasrunning 3-D
analyses:westernPacific,westernAtlantic,andGreenland/NorwegianSeas.Separatesea
surfacetemperatureOTIS analysesalsorun for eachNORAPSarea. OTISusesabout42
million wordsof memoryandtakesapproximately30minutesof wall time for its largest
area,a 28Km globalanalysisof seasurfacetemperature.

TOPS - The ThermodynamicOceanPredictionSystem(TOPS) is a synoptic ocean

mixed-layer model (Clancy and Pollak [11]). Both global coarse-resolution and regional

high-resolution versions are in use. TOPS is initialized by temperature and salinity fields

nowcast by OTIS, and includes sophisticated turbulence closure physics and radiation

absorption calculations. TOPS produces forecasts of upper-ocean thermal structure and

currents driven by surface wind stresses and heat fluxes predicted by either NOGAPS or

NORAPS. Three regional areas, one for each 3-D OTIS area, and a global TOPS, each

run once per day. TOPS uses approximately 13 million words of memory and requires

about 20 minutes of wall time to complete a 72-hour forecast for the global 110 Km

configuration.

PIPS - The Polar Ice Prediction System (PIPS) is a dynamic and thermodynamic sea-ice

model designed to forecast ice thickness, concentration and drift in the arctic (Cheng and

Preller [12]). PIPS is driven by surface wind stresses and heat fluxes from NOGAPS, and

is coupled with an underlying dynamic ocean model. PIPS is updated daily from an

objective analysis of ice concentration data from the Special Sensor Microwave/Imager

(SSM/I) instrument aboard the Defense Meteorological Satellite Program (DMSP)

satellites. PIPS uses 41 million words of memory and takes about 45 minutes of wall

time to run.

DART - The Data Assimilation Research Transition (DART) model is a two-layer

primitive equation dynamic ocean model designed to forecast the evolution of the Gulf

Stream (Thompson and Schmitz [13]). It currently produces two-week forecasts of Gulf

Stream north-wall positions.

The following models are currently being implemented and tested for possible

operational use at FNMOC.

POM - The Princeton Ocean Model (POM; Blumberg and Mellor [14]) is a multi-level

primitive equation ocean circulation model, which contains a sophisticated treatment of

vertical mixing. The model includes atmospheric and tidal forcing and is designed

108

specifically for high-resolutionshallow-waterapplicationsin supportof the Navy'snew
emphasison coastaloperations. Initial testingof POMat FleetNumericalhasbeenfor
the West Coast of the United States(Clancy et al. [15]) and for the Yellow Sea

(Riedlinger and Preller [16]). POM has already been used operationally by the Navy in

semi-enclosed seas where lateral open boundary conditions are not an issue (Horton, et

al. [17]). In general, POM is expected to be the Navy's model-of-choice over the next

several years for providing high-resolution coastal predictions of currents, sea level and

thermal structure.

NLOM - The Navy Layered Ocean Model (NLOM) is a global and, at least, marginally

eddy resolving implementation of the Navy Layered Ocean Model of Wallcraft [18],

which is a descendant of the model of Hurlburt and Thompson [19]. NLOM will support

coastal implementations of POM through lateral boundary conditions, and provide an

improved representation of ocean currents on the global scale. Assimilation of satellite

altimeter data into NLOM and POM will be a crucial requirement for their success.

MOM - The GFDL Modular Ocean Model (MOM) (Pacanowski [20]) is a three-

dimensional primitive equation ocean model.. MOM was designed to run on large-scale

vector processors such as FNMOC's Cray C90. It has been used with NOGAPS in

coupled air/ocean research at the Naval Research Lab in Monterey (Li and Hogan [21]).

FNMOC is currently using version 2 (MOM 2). It contains state-of-the-an physical

parameterizations with an implicit free surface and surface mixing. MOM 2 is being

tested on a global one-half degree latitude and longitude grid, with 20 vertical levels.

With appropriate data assimilation, MOM 2 may provide improvements over global 3-D

OTIS and TOPS. Expected products from MOM 2 would be surface and subsurface total

currents (TOPS provides only wind mixed surface currents), temperature, salinity,

dynamic height and mixed layer depth.

THE CHALLENGE

Within the next three years, FNMOC must complete a transition of all its hardware and

software to a more capable system. Although the hardware vendors for the new system

are not yet identified, the specifications are now being determined for targeted software

requirements. With this planned increased computer power, numerical prediction models

will have fewer constraints on computer memory and run time limitations. For this

transition to take place, existing meteorological and oceanographic models will either

have to migrate to the new scalable computer architecture with appropriate

reprogramming, or be replaced with new software. The ultimate challenge will be to

combine relatively new hardware and software technology into a capable, operational

system by the year 2001.

Table 2a summarizes expected capabilities for the future generation of meteorological

models at FNMOC. Hardware specifications for FNMOC's scalable architecture will

allow the global weather model to execute over its entire forecast length of ten days,

twice per day and taking five hours of wall clock time per ten day forecast. Specifications

109

also call for the capability to run at least five regional area models. Each regional model

will be able to nest smaller, higher resolution models on mesoscale, tactical, and

battlefield domains. Nesting is a means of simultaneously executing the same regional

model for different scaled domains provided they are contained within each other. Table

2a also shows the number of model levels, fields, and storage requirements for the global

model and five nested regional models.

Domain Size

Grid

Resolution

Vertical Levels

Multi Level

Parameters

Single Level
Parameters

Forecast
Periods

GLOBAL

Global

50 km (-.5
degrees lat/lon.)

50 Sigma
30 Pressure

30+

81 (240
hours in 3 hour

increments)

REGIONAL

9000 X 9000

km

54 km

50 Sigma
30 Pressure

30+

17 (48 hours in
3 hour

increments)

MESOSCALE

3000 X 3000

km

18km

50 Sigma
30 Pressure

30+

17 (48 hours in
3 hour

increments)

TACTICAL

1000 X 1000

km

6km

50 Sigma
30 Pressure

30+

9 (24 hours in
3 hour

increments)

BATTLEFIELD

333 X 333 km

2km

50 Sigma
30 Pressure

30+

25 (24 hours in 1

hour increments)

2-D Press 17010 3570 3570 1890 5250

Level Fields

2-D Sigma 24300 5100 5100 2700 7500
Level Fields

Grid Points per 259920 27789 27789 27789 27789
2-D Field

Application 3570 3570 1890 5250
Grids

IEEE Storage --43 Gbytes -7 Gbytes -7 Gbytes --4 Gbyte -10 Gbytes

Table 2a. Future meteorological model requirements. The Battlefield scale is a required capability, but

may not be invoked in all areas.

One of the strengths of the new model software designs being developed at FNMOC is

the ability to couple the meteorological models with oceanographic models. Coupling

could help account for positive feedback and air-sea interactions (Li [22,23]). COAMPS

will become FNMOC's regional coupled air-sea model as ocean submodel components

are added progressively to it. FNMOC will look toward the "Ocean" part of COAMPS to

meet many of the customer requirements for oceanographic products.

NOGAPS will be reconfigured to run on FNMOC's new scalable architecture and will

continue to provide global atmospheric products. The concept of coupling a global ocean

circulation model with NOGAPS, in some fashion, is also being studied. There are at

least two ocean circulation model candidates that could be selected for this purpose. One

is being developed at the Naval Research Laboratory at Stermis Space Center in

Mississippi. It is the NRL Coastal Ocean Model (NCOM). NCOM is expected to be the

future ocean component for COAMPS, and may also be delivered to run in a global

110

configuration. If a global version becomes available, it could run with either one-way

interaction with NOGAPS (forced with NOGAPS winds and heat fluxes), or run in a

more closely coupled mode. The second choice is a descendent of MOM, called the

Parallel Ocean Program (POP; Semtner [24]). POP was reprogrammed at the Los

Alamos National Laboratory for use on parallel computers with distributed memory. Due

to the common heritage between MOM and POP, the transition of MOM from the Cray

computers to POP on a parallel architecture makes POP a strong candidate for one or

two-way coupling with NOGAPS.

Future ocean wave models will also need to be reprogrammed to run on the scalable

computer architecture. The migration of WAM is currently being funded in part by the

Common High Performance Computing Software Support Initiative (CHSSI). This is a

component of the Department of Defense High Performance Modernization Program

(West, et al. [25]). Migration of TOPS, OTIS and PIPS is still an issue. Replacement

rather than migration may be the answer for TOPS and OTIS. Here, with appropriate data

assimilation, NCOM could prove to show more skill. The danger, however, of seeking

replacements instead of migrating the existing models is that FNMOC would be forced to

rely on new and unproven technology to replace proven operational products. Table 2b

summarizes the desired capabilities of future oceanographic models.

GLOBAL MESOSCALE TACTICAL BATTLEFIELD

Domain Size Global 3000 X 3000 km 1000 X 1000 km 333 X 333 km

Grid Resolution 25 km (-.25 18 km 6 krn 2 km
degrees lat/lon.)

Vertical Levels 35 35 35 35
Multi-level 7 7 7 7
Parameters

Single-level 20+ 20+ 20+ 20+
Parameters

Forecast Periods 41 (240 hours in 6 17 (48 hours in 3 13 (36 hours in 3 25 (24 hours in 1
hour increments) hour increments) hour increments) hour increments)

2D Fields 10865 4505 2385 6625

Grid Points per 2D 1038240 27889 27889 27889
Field

IEEE Storage --46 Gbytes -3 Gbytes -2Gbytes' ---4Gbytes

Table 2b. Future oceanographic model requirements. The Tactical and Battlefield scales are required

capabilities, but may not be invoked in all areas.

CONCLUSION

Confronted with an aging computer system that has become nearly saturated with

operational applications, FNMOC is faced with a new challenge over the next three years.

This challenge will be to replace its existing system with an affordable, yet capable, new

system. The transition will target a scalable system. FNMOC will take advantage of new

technology both in hardware improvements and in numerical modeling advancements

available from the scientific community. Since vendor support for the existing system is

111

becoming costly with very little end benefit, the new hardware/software configuration

must be in place within three years.

REFERENCES

1. Fleet Numerical Meteorology and Oceanography Center, 1987: Strategic Plan, 7

Grace Hopper Avenue, Stop 1, Monterey, CA 93943

. Hogan, T.F., and T.E. Rosmond, 1991" The description of the Navy Operational

Global Atmospheric System's spectral forecast model. Monthly Weather Review, 119,

1786-1815.

3. Hodur, R.M., 1987: Evaluation of a regional model with an update cycle. Monthly

Weather Review, 115, 2707-27I 8.

. R. M. Hodur, 1997. The Naval Research Laboratory's Coupled Ocean/Atmosphere

Mesoscale Prediction System (COAMPS). Monthly Weather Review, 125, 1997, pp.

1414-1430.

. Clancy, R.M. and R. M. Hodur, 1996. Projected five-year evolution of the Coupled

Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Proceedings of the

American Meteorological Society Conference on Coastal Oceanic and Atmospheric

Prediction, Atlanta, GA, 28 January through 2 February 1996, pp. 68-71.

. Pauley, R., M.A. Rennick, and S. Swadley, 1996: Ensemble forecast product

development at Fleet Numerical Meteorology and Oceanography Center. Tech Note,

Models Department, FNMOC, Monterey, CA 93943-5501.

7. Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: the generation of

perturbations. Bulletin of the American Meteorological Society, 74, 2317-2330.

8. Kurihara, Y., M.A. Bender, R.E. Tuleya, and R.J. Ross, 1995: Improvements in the

GFDL Hurricane Prediction System. Monthly Weather Review, 118, 2186-2198.

9. WAMDI Group, 1988: The WAM model - A third-generation ocean wave prediction

model. Journal of Physical Oceanography, 18, 1775-1810.

10. Cummings, J.A., 1994: Global and regional ocean thermal analysis systems at Fleet

Numerical Meteorology and Oceanography Center. Proceedings of the MTS'94

Conference, 7-9 September 1994, Washington, DC, Marine Technology Society,

1828 L Street NW, Suite 906, Washington, DC 20036.

11. Clancy, R.M., and K.D. Pollak, 1983: A real-time synoptic ocean thermal

analysis/forecast system. Progress in Oceanography, 12, 383-424.

112

12.Cheng,A., and R.H. Preller, 1992: An ice-ocean coupled model For The Northern

Hemisphere. Geophysical Research Letters, 19, 901-904.

13. Thompson, J.D., and W.J. Schmitz, 1989: A limited-area model of the Gulf Stream:

Design and initial experiments. Journal of Physical Oceanography, 19, 791-814.

14. Blumberg, A.F., and G.L. Mellor, 1987: A description of a three-dimensional coastal

circulation model. In: Three-Dimensional Coastal Circulation Models, N. Heaps,

ed., American Geophysical Union, Washington, DC, 208 pp.

15. Clancy, R.M., P.W. deWitt, P. May and D.S. Ko, 1996: Implementation of a coastal

ocean circulation model for the west coast of the United States. Proceedings of the

American Meteorological Society Conference on Coastal Oceanic and Atmospheric

Prediction, Atlanta, GA, 28 January through 2 February 1996, pp. 72-75.

16. Riedlinger, S. and R. Preller, 1996. The Development of a Dynamic/Thermodynamic

Numerical Model of the Yellow Sea/East China Sea Region, Proceeding of the

American Meteorological Society's Conference on Coastal Oceanic and Atmospheric

Prediction, Atlanta, pp52-79.

17. Horton, C., M. Clifford, J. Schmitz and B. Hester, 1994: SWAFS: Shallow Water

Analysis and Forecast System overview and status report. Technical Report, Naval

Oceanographic Office, Stennis Space Center, MS 39522, 53 pp.

18. Wallcraft, A.J., 1991: The Navy layered ocean model users guide. NOARL Report

35, Naval Research Laboratory, Stermis Space Center, MS 39529.

19. Hurlburt, H.E. and .I.D. Thompson, 1980: A numerical study of loop current

intrusions and eddy shedding. Journal of Physical Oceanography, 10, 1611-1651.

20. Pacanowski, R.C., 1995: MOM 2 Documentation User's Guide and Reference

Manual, Version 1.0, GFDL Ocean Technical Report #3.

21. Li, T. and Hogan T.F. 1998: The Role of the Annual-Mean Climate on Seasonal and

Interannual Variability of the Tropical Pacific in a Coupled GCM. Submitted to

Journal of Climate.

22. Li, T. 1997: Air-Sea Interactions of Relevance to the ITZC: Analysis of Coupled

Instabilities and Experiments in a Hybrid Coupled GCM. Journal of Atmospheric

Sciences, 54,134-147.

23. Li, T. 1997: Phase Transition of the E1 Nino-Southem Oscillation: A stationary SST

Mode. Journal of Atmospheric Sciences, 54,2872-2887.

113

24.Semmer,A.J.,1997: Introductionto "A Numerical Method for the Study of the
Circulationof theWorldOcean". Journalof ComputationalPhysics,135,149-153.

25. West,J.E.,Jensen,R.E.,and Turcotte,L.H., 1997: Migration of WAM to Scalable
ComputingEnvironments,U.S. Army Corps of Engineers,WaterwaysExperiment
Station,TechnicalReportITL-97.

114

Parallelization of a spectral atmospheric GCM

V. Balaji*

NOAA/GFDL, P.O Box 308

Princeton University

Princeton NJ 08542

May 20, 1998

Abstract

The spectral transform has proved a robust method for the treatment of the non-

linear adiabatic Navier-Stokes equations of fluid flow on a sphere. It is robust and

the intrinsic shortcomings of spectral methods (dispersion and truncation, and the

formation of Gibbs ripples in the presence of steep gradients) are well understood. It

is therefore one of the preferred forms for global atmospheric models. In the spectral

transform method each field has a representation in spectral coefficients of spherical

harmonics, and a corresponding grid field. The linear dynamics is generally treated

in spectral space, while the physics (i.e gridscale parameterization of sub-gridscale

processes and thermodynamics) and the non-linear terms are treated in grid space.

*Senior Applications Analyst, Silicon Graphics/Cray Research.

115

A new spectral dynamical core is being developed at GFDL. This model is entirely

coded in fg0 and takes a modular, object-oriented approach. Each field is represented by

a grid object and a spectral object with a standard interface. The transform module can

convert one to the other. Separate modules exist for operations that are done entirely

in spectral space and grid space. All the physics modules treat the grid objects, and

since the interface is standard, the physics in this model is entirely modular.

The current paper concerns the parallelization of this spectral dynamical core. The

approach that has been taken remains entirely consistent with the modular object-

oriented approach. A flexible, dynamic data decomposition module has been written

which takes the grid and spectral objects and manages the distribution and communi-

cation of data among independent processors. The decomposition is entirely dynamic

and run-time configurable, and divides grid or spectral space into data and computa-

tional domains. The domains can be global or local at various stages of the transform

depending on our tolerance for the communication overhead. This permits various

strategies to minimize inter-processor communication in the two stages of the spectral

transform. We demonstrate different methods of implementing this within the dynamic

decomposition approach. Finally, we also present performance of the parallel spectral

dynamical core on a Held-Suarez climate benchmark.

1 Introduction

All numerical models for the atmospheric general circulation (GCMs) solve discrete forms

of the non-linear Navier-Stokes equations for fluid flow in a spherical shell, coupled with

equations describing the thermodynamic state of air. The prevalent terminology divides

116

these equations into the dynamics and physics, where the former refers to the resolved Navier-

Stokes dynamics, with the parameterization of thermodynamics and unresolved scales being

termed the physics. The division can be somewhat arbitrary, and is obviously a function of

the resolution scale. For climate problems in particular, it is necessary to develop numerical

representations of these equations that not only preserve long-term statistical integrity, but

are also computationally efficient enough for the very long integrations that these studies

require.

The design of the codes in which these simulations are carried out remains in a dialecti-

cal relationship with the evolution of computer architectures and compiler technologies. In

particular, codes are in transition now from an era dominated by vector supercomputers to

one where the Trades blow in the direction of massively parallel processing architectures.

Furthermore, as interest grows in simulation of the effects of climate change at regional and

smaller scales, there is a trend toward increasing resolution, and the phenomena represented

in the physics packages of models remains in constant evolution. In fact, given the wide vari-

ety of atmospheric GCM code designs currently in existence, a benchmark has been proposed

for the intercomparison of their performance and integrity over climate timescales (Held and

Suarez 1994). It is not a conventional benchmark in that what will be compared is the equi-

librium statistical behaviour (the "climate") of the models rather than their convergence

toward an exact solution.

The twin needs of scalability and modularity have prompted the design of a new genera-

tion of models at GFDL. These models are being designed with a maximum of flexibility in

mind. Not only may these codes have to perform over a range of computing architectures,

they will also be in constant flux, especially in regard to the physics packages with which

117

they areused.With this in mind, wehaveisolatedthe dynamical core of these models as far

as possible. The dynamical core accepts a single uniform module interface for physics. Thus,

the physics packages remain entirely interchangeable. The dynamical cores themselves also

retain a modular texture, as a wide variety of algorithms may be used for various aspects of

the dynamics depending on the problem being solved and the available computing power on

the platform upon which the calculations are being carried out.

The new generation models include a finite-difference gridpoint model and a spectral

dynamical model. This paper is concerned with the modular design of a scalable dynamical

core for the spectral model.

In Sec. 2 we describe the spectral transform method that is generally used for spectral

dynamical cores. In Sec. 3 we analyze the data dependency patterns of the spectral transform

method and construct an algorithm for the spectral transform method in Fortran 90 that

permits us to evaluate a range of possible parallel implementations.

2 The spectral transform method.

A spectral representation consists in constructing the dynamical fields as expansions in spec-

tral basis functions. The expansions are truncated at some chosen order for numerical pur-

poses. Spherical harmonics are generally chosen as spectral basis functions. The problem

arises with non-linear terms, such as in advection, which, if explicitly expanded, result in

a sum of terms quadratic in the order of the expansion. The transform method (Orszag

1970) consists in returning the fields to grid space for the computation of non-linear terms,

and transforming back for the spectral computations. Since this method involves frequent

118

transformationsbetweengrid fieldsand spectralfields,efficientnumericaltransform methods

havebeendeveloped,including parallel methods(Fosteret al. 1992).

The expansionof a quantity f(O, ¢) in spherical harmonics is as follows:

f(e,¢) = _ _ fm, Pm,(cose) e im¢ (1)

m ¢¢ "=1'_1

where (0, ¢) are the spherical co-ordinates, m and n are termed the Fourier wavenumber

and the spherical wavenumber respectively, and Pro, are the associated Legendre polynomials

of the first kind of order m and degree n. The spherical harmonics Ym, - Pm=e i'*_' satisfy

the orthogonality relationship:

r NP
1

f f Y,,,.Y;.,.,d(cosO)d¢
-,r SP

= (2)

where the 0 integral runs from the South to the North Pole.

The spherical harmonic coefficients fm_ of the expansion are given by the inverse trans-

form:

,r NP
1

f'= = 4-;[f f (cosO)¢"' d(cosO)d¢ (3/
tJ

-r SP

In the numerical representation, these infinite series are evidently truncated. The Fourier

wavenumber m is first truncated to a maximum of M. In the triangular truncation, the

spherical wavenumber n is truncated at N = M. In the rhomboidal truncation, n is truncated

at Iml + M. In both cases, M is sufficient to specify N. The truncation is thus specified

either as T or R (for triangular or rhomboidal) followed by the value of M, which is sufficient

to specify the spherical truncation as well. Thus T42 refers to a spectral expansion that is

119

triangular-truncated at M = 42 and N = 43. Henceforth, the summations in Eq. 1 will be

understood be truncated at some specified value.

The numerical representation of the integrals in Eq. 3 require a discretization in space

of _ and ¢. The I longitude points ¢_ are generally chosen to be evenly distributed between

0 and 2re. This facilitates efficient methods for the evaluation of the Fourier integral such as

the FFT. For the evaluation of the Legendre integral, the J latitude points Oj are chosen to

lie at the Gaussian quadrature points. Note that the Gaussian grid is non-uniform in j. The

spectral transform (Orszag 1970) requires I > 3M + 1 and J = I/2.

The numerical form of the transformations between grid space and spectral space is thus

as follows:

M

fij = f(Oj,¢i)= _ _-_f_,_P,_,_(cosOj) e -'m¢'
m=-M n

1 J I

f'_" = 4----__ _ fijeim¢' Pr,, (cos Oj) A (cos/_j) A¢
j=l i=1

(4)

(6)

where the limits of _: depend on the method of truncation, and A¢ is the assumed
n

constant longitude spacing.

The sums are performed in the order shown in Eq. 5 and Eq. 6. The intermediate step

produces the partially transformed quantity f,,,j, which we term the Fourier representation:

I

ymj= (cos0j)= f;je (7)
n i=1

120

3 Parallelism in the spectral transform.

Consider now a model using the spectral transform method, where at each timestep, a field

f will have a certain number of operations performed on its spectral form finn and others

on its grid form fij. Starting with the spectral form finn we first perform a summation in n,

where the summation has to be performed independently over all the possible values of m

and j. This step is thus coupled in n and data-parallel in m and j, and produces f,_j. We

then perform a Fourier transform upon fmj, a step that is coupled in m, but data-parallel in

i and j. We may now perform any operations upon f that are required to be performed in

grid space. Similarly in the reverse transform Eq. 6, we first do an inverse Fourier transform

upon fij that produces a series of independent m coefficients at each j; and finally a reverse

Legendre transform that consists of a sum on the Gaussian quadrature points j to reproduce

the spectral field finn. The data dependencies described here are graphically shown in Fig. 1.

Each of these stages involves 3 of the 4 co-ordinate axes m, n, j, i, where a global reduction

is performed on one of the axes, and is data-parallel in the other 2. We try to exploit this

symmetry in our developmemt of a parallel implementation. 1

Distributed global reductions are generally discouraged in developing parallel algorithms,

since they tend not to scale well with increasing processor counts. While keeping this in mind

in developing our parallel implementation, we will evaluate the performance of distributed

reductions as well. But for the moment consider the first step of the cycle in Fig. 1, fm,_ -+

fmj. In a parallel implementation, each of the f,,,js could in principle be calculated on a

XThere is the possibility of further parallelism in that there are many such fields f, typically the number

of global model variables x the number of vertical levels per global variable, but in all cases the coupling

among fields is very tight, and inhibits parallelism. We will not be considering this sort of parallelism.

121

Figure 1: Data dependencies in the four steps of the spectral transform.

Efm.P.,.(j)

I " q f"J

E f,.jP_.(j)_x cosoj
J

Es I1_11. E_ II,llJ

E, ll_llJ

[f_J]'-Ef,j,-,..,,zx ¢

fmj e-im¢i
m

separate processor. But the processors computing f, nj for any value of j would all require

all the values fm, for all values of n, either by performing a global reduction or by acquiring

a local copy. This is schematically illustrated in Fig. 2.

Since the entire column fro, in Fig. 2 is required for the computation, this step in the

algorithm will be exactly parallel over a maximum of M columns. When the processor count

P exceeds M, we expect the scalability to begin falling off. If a large number of processors

P > M are available, we may parallelize the computation further:

f_=_ = (s)

where n = NS-.. NE is the range of n available on the processor that is computing f,,,j.

The sum over the domains D, is then a global reduction across the processors computing

122

Figure 2: Data domainsin the fm,_ --+ f,_j computation.

fmn

(M,N)

i

I

!

(M,J)

the m column.

Similar considerations hold for each step in the process. For the f,,,j --+ flj we have Fig. 3,

where now the scalability is limited by J, and all the M values f,_j at each j are required

for each fij computation. Similarly, in the reverse order, we have the data dependencies

in Fig. 4 for the computation fij --+ f,=j, with a scalability limit of I processors, and for

f,,,j _ f,,n, we have the data dependencies in Fig. 5, with a scalability limit of N.

We now develop a data distribution scheme based upon these considerations. In its most

general form, the decomposition is 2D. We distinguish three spaces: the spectral space S and

grid space G, holding the representations f,_,, and fij respectively; and the Fourier space F,

holding the intermediate form f_j. In each space, data location in memory is specified in

terms of a data domain and a computational domain. 2 The data domain consists of all the

2This distinction exists in gridpoint models as well, where the data domain may include a halo region

123

Figure 3: Data domainsin the fmj --_ fij computation.

(M,J)!

f_j

(I,J)

points in some space that is available on a processor, and the computation domain is the

set of points which are actually computed. The computational domain in a space is denoted

by its name, for the data domain we add a superscript n. Each domain is considered to be

global along an axis if it contains all the possible values along that axis, or local otherwise.

An axis along which a domain is global is given as a subscript. Thus, if the dth domain in

spectral space is global in M, we denote this as S_M. The data domain is at least as large

as the computational domain:

HaC_H_ (9)

where H E {S, F, G}. If the data domain exceeds the computation domain, Ha C H_, the

around the computational domain.

124

Figure 4: Data domainsin the fij _ fmj computation.

fij

(I,J) (M,J)

data outside the computational zone must be fetched from the processor on which they are

computed. Every data point is computed on at least one processor, but may be redundantly

computed on more than one.

UHa = H (10)
d

The subscript a runs over the number of domains into which the space has been divided.

If the number of domains exceeds the processor count P, a processor will compute more than

one domain. If it is less, some processors will be idle or redundant.

By examining Fig. 2 we see that defining data domains S_N is sufficient for the compu-

tation f,_ _ f,_j to be local, irrespective of the other data distributions. Whether we use

a local spectral computational domain Sd or a global one Sd;N depends on whether there is

125

Figure 5: Data domainsin the f,.,,j _ finn computation.

fmj

(M,J)

I

I

,..___._._1

(M,N)

enough computation in S to outweigh the cost of gathering data across processors to con-

struct S_N. If there is not, we would rather perform the computations in S redundantly on

each processor. As mentioned earlier, this step will scale perfectly only up to M processors.

Similarly, consulting Fig. 3 - Fig. 5, we may see that the use of domains F,_;M,DGd;zDand

F_j for the subsequent steps in the computation loop in Fig. 1 ensures that all global reduc-

tions are performed locally. Note especially that the Fourier space is partitioned differently

in the forward and backward Legendre transforms. Whether global computational domains

F,_;M, Ga;t and Fa;a are used depends on the computation to communication ratio at each

step. Since the only computations on the Fourier domain are for the transform itself, it is

likely that we may use global domains here, especially on loosely-coupled systems. Compu-

tation in G is likely to be intensive enough to warrant using local domains Gd. This will

126

then entail a data gathering step after the gridspace computations are completed, prior to

commencing the inverse Fourier transform.

This analysis has been implicitly done with reference to a message-passing environment.

It is to be noted, however, that even on a shared-address NUMA machine, this method of

partitioning clata has much to recommend it. All domains will be local, and the partitioning

of data in memory will then naturally be according to the computation on the processor

(Culler and Singh 1998). Thus, a global array f (1 : IMAX, 1 : JMhX) will instead be dimen-

sioned f (IS : IE, JS : JE, NDOMAINS), where (IS: I E, JS : JE) are the local domain bounds, and

NDOMAINS is the number of domains on the partition.

4 Discussion.

Tests are currently underway to determine the scaling behaviour of this method on both

MPP (t3e) and DSM (Origin) platforms. We will report the scalability of the algorithm

for various domain configurations and processor counts, and for a range of computational

densities in spectral and grid space.

References

Culler, D. E., and J. P. Singh, 1998: Parallel Computer Architecture: A Hardware/Software Ap-

proach, p. 1100, Morgan Kaufmann Publishers.

Foster, I. T., W. R. Gropp and R. Stevens, 1992: The parallel scalability of the spectral transform

method., Mon. Wea. Rev., 120, 835 - 850.

Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of

127

atmosphericgeneralcirculation models., Bull. Amer. Met. Soc., 75(10), 1825 - 1830.

Orszag, S. A., 1970: Transform method for the calculation of vector-coupled sums: Application to

the spectral form of the vorticity equation., J. Atmos. Sci., 27, 890 - 895.

128

THE SAME-SOURCE PARALLEL MM51

John Michalakes

Mathematics and Computer Science Division

Argonne National Laboratory

Chicago, Illinois 60439

michalak@_ncs.ard.gov
+1 630 252-6646

Fax: +1 630 252-5986

ABSTRACT

With the March 1998 release of the Penn State University/NCAR Mesoscale Model (MM5), the
official version of the model (MM5v2 Release 8) now runs on distributed memory (DM)
message-passing platforms. Under an IBM-funded effort, source Iranslation and runlLrne library
support minimize the impact of parallelization on the original model source code with the result
that the majority of code is line-for-line identical with the original version. Parallel
performance and scaling are equivalent to earlier, hand-parallelized versions; the modifications
have no effect when the code is compiled and run without the DM option. Supported computers
include the IBM SP2, Cray T3E, and Fujitsu VPP. The approach is compatible with shared-
memory parallelism, allowing DM/SM hybrid parallelization on distributed memory clusters of
SMP. Preliminary results show that scalability on distributed shared memory computers such as
the SGI Origin 2000 also benefits from a distributed memory programming model.

1. INTRODUCTION

The Pennsylvania State/National Center for Atmospheric Research Mesoscale Model is a

limited-area model of atmospheric systems, now in its fifth generation, MM5 (Grell et al,

1994). It was designed for vector and shared-memory parallel architectures. Two earlier

distributed-memory parallel versions of the model code were developed at Argonne National

Laboratory -- the Massively Parallel Mesoscale Model (MPMM) and a subsequent Fortran90

implementation, MM90. These were efficient, scalable, more modular and dynamically

configurable (Foster and Michalakes, 1993; Michalakes, 1997b) than the source model.

Nevertheless, extensive modification for paraUelization prevented integration with the official

version of MM5. The challenge was to produce a distributed memory parallel version of the

model sufficiently close to the original source code that it could be officially adopted,

supported, and maintained. This was accomplished March, 1998, with the release of MM5

I This work was supported in part by the Mathematical, Informational, and Computational Sciences Division subprogram of the

office of Computational and Technology Research, U.S. Depananent of Energy, under Contract W-31-109-Eng-38.

129

Version 2 Release 8, the first official version of the model to support distributed memory

parallelism.

The "same-source" approach to parallelization places an emphasis on preserving the original

source code, a critical factor in NCAR's willingness to accept the changes to the official

model. The approach employs an application-specific parallel library and a compile-time

source translator to automate and hide parallel mechanisms in the code. The Runtime System

Library, RSL (Michalakes, 1997c), provides domain decomposition, local address space

computation, distributed I/O, and interprocessor communication supporting parallelization of
both the solver and mesh refinement code. The Fortran Loop and Index Converter (FLIC

(Michalakes, 1997a)), translates at compile-time to generate a parallelized code (that only the

compiler sees) from a single version of the source model. The approach is essentially

directiveless, requiring only a small amount of information--sufficiently general and concise
to fit on the tool's command line--to direct the translation.

The DM-parallel option to MM5 was released as part of the official model in March, 1998, as

MM5 Version 2 Release 8. The code is running operationally in real-time forecast mode on

an IBM SP at the United States Air Force Weather Agency facility, Offutt Air Force Base,

Nebraska. The model is also in use by the U.S. EPA, the California Air Resources Board, and

a number of other research, university, and government users in the United States, Europe,

and Asia. This paper summarizes issues that arise in parallelization of a weather model and

describes the tools-based approach used to parallelizing MM5. Results are evaluated in terms

of impact on model source code as well as model performance and scaling.

2. SAME-SOURCE

Architecture-specific coding affects understandability, maintainability, extensibility,

reusability, and portability to other, dissimilar architectures. Such coding may manifest itself

in how arrays are dimensioned, aligned, and allocated in memory; how loops are nested or
otherwise structured (blocked, unrolled, fused); at what level loops are positioned in the

subroutine call hierarchy; how iteration is expressed (loops or array syntax); how information

is exchanged between subroutines; and, with distributed memory, how communication is

implemented. Maintaining separate codes is difficult and time consuming; and because

changes and enhancements must be made by hand and tested over all versions, some versions

inevitably fall behind. The ability to exploit a range of computer architectures with a single

source code provides obvious benefits. If, in addition to a "single-source" the user also

wishes to parallelize the code while preserving the pre-existing non-parallel source, the

additional constraint of "same-source" is imposed.

Distributed memory programming provides the most general programming model for both

portability and scalability, since distributed memory programs adapt trivially to shared

memory (while the reverse is not true). Portability through distributed memory programming

will best position programs to exploit successive advances in high-performance computer

architecture, the latest of which is low-cost high-speed networked configurations of personal

computers (Cipra, 1997), a computational option unavailable to shared-memory programs.

130

Programmingfor distributedmemoryprovidesboth portability and scalability. Another
emerging architectureis distributedmemory configurationsof SMP nodes; distributed
memoryprogrammingis anessential(andnon-mutuallyexclusive)componentof anoverall
strategyto exploit thesemachines. Finally, on distributed/sharedmemoryarchitectures-
distributedmemorymachineswith additionalhardwareandsoftwarefor to supportshared-
memoryprogramming(e.g.theSGI Origin 2000)-- distributedmemoryprogrammingmay
still providesbetterscalingbecauselocality isexplicitelyenforced.

Much of the painful low-level detail originally associatedwith message-passing
programming---domain-decomposition,message passing, distributed I/O, and load
balancingmhasbeenefficiently encapsulatedin application-specificlibraries(Hempel and
Ritzdorf, 1991; Kohn and Baden, 1996; Michalakes, 1997c; Parashar and Browne, 1995;

Rodriguez et al, 1995). These approaches still require modification to the code for iteration

over local data, global and local index translation, and distributed I/O. If one is able to design

a new model or undertake a major redesign, these issues may be addressed directly in the

code, as a number of groups have demonstrated (e.g., ECMWF's IFS and Environnement

Canada's MC2 models). However, if a same-source and not only single-source

implementation is required, additional help is needed.

Source translation removes the remaining difficulties associated with implementing the

model efficiently for distributed memory. Further, source translation is applicable to a

broader range of performance portability concerns. Loop restructuring, data-in-memory

restructuring and realignment, and other manipulations are all effective code transformations

for addressing single-processor cache performance, data locality, and communication cost.

Source translation and analysis tools also uncover data dependencies in parallel routines

(Friedman et al, 1995; Kothari, 1996). Finally, source translators may be used for

nonperformance-related code transformations, such as adjoint generation for sensitivities and
four-dimensional variational assimilation (Goldman and Cats, 1996). Source translation is a

key enabling technology for the single-source development of fully integrated, fully portable

models.

3. APPROACH

Parallelizing a weather model for distributed memory parallel computers involves dividing
the horizontal dimensions of the domain and assigning the resulting tiles to processors. The

code is then restructured to compute only the cells stored locally on each processor (by

modifying DO loops and index expressions) and communication is added to exchange data

between processors. In an explicit model such as MM5, the communication between

processors is essentially nearest neighbor and is used to update extra memory regions around

the local partition. Communication is also required to support mesh-refinement in models

that support nesting.

Adapting the model to compute over multiple address spaces requires modifying the code to

execute only over the local partition on each processor. This involves modification of loops

and indices. There are two approaches: either establish that an index expression always

131

representsa global index (Global View), or establishthat the index expressionalways
representsthe index of a cell in local memory(Local View). In either case,the actual
indexingof themodelarrayswithin thebodiesof parallelloopsis unaffected;whatdiffers is
the expressionof the loop rangesthemselves,the declarationand storageclassesof the
decomposedarrays,andthesubroutineinterfaces.Theglobal view hasadvantagesfor new
codeswhile thelocalviewhasadvantagesfor asame-sourceparallelizationof a legacycode.

In theglobalview, rangesof parallelloopsin a subroutinearemodifiedto beginandendat
theglobalindicesof thefirst andlastcellsontheprocessor.Fortransubrangeexpressionsare
usedto declare locally sized model arrayswhose elementsare, nevertheless,globally
indexable.Theglobalviewallowsall indexexpressionswithin thesubroutine- arrayindices,
testsfor boundaryconditions,and instanceswherethe value of an index feedsinto the
computation- to remainas-is.However,sinceeachprocessor'sarraysmust be declared
usinga different subrange(that is, eachprocessor'ssetof cells startsandendsat different
global indices),the mappingof arraysto storagemustbe dynamic:modelarraysmust be
passedthroughargumentlistsor dynamicmemoryallocationfeaturessuchasthosefound in
Fortran-90mustbeused.Furthermore,local decomposedarraysin the subroutinemustalso
be dynamicallyallocatedusingsubranges,eitherexplicitly or as stackvariables,which is
supportedin Fortran-90butnot in Fortran-77.

In the local view, asin the globalview, loop rangesoverdecomposeddimensionsmustbe
modified,but heretheybeginandendat local indicesof thefirst andlastcell storedon the
processorregardlessof theirpositionwithin theglobaldomain.This allowsarraydimensions
to be uniform overprocessorsand avoidsthe needto overhaulexistingdatastructures.It
becomesnecessary,however,to translatebetweenlocal andglobalmeaningof undercertain
circumstances:loop-invariantindex expressions- a constantappearsas an index into a
decomposedarraydimension,for example-- mustbeconvertedfrom globalto local. Index
expressionsthat appearin testsfor positionin thedomain- boundarytests,for example-
mustbeconvertedfrom local to global.Indexexpressionswhosevaluesfeedinto themodel
computationin someway -- computingdistancesbetweentwo points basedon their grid
indices,for example- mostbeconvertedfrom localto global.

In boththeglobalandlocalview,modificationof loopingstructuresanddatadeclarationsare
requiredto adaptthecodeto distributedmemoryexecution.Theglobalview avoidstheneed
to convertbetweenglobalandlocal indexingbutrequiresgreaterflexibility in declaringand
allocatingmodelstorageand it requiresthat databe passedbetweensubroutinesthrough
argumentlists. The globalview shouldbe consideredfor new codesor codesundergoing
majorredesign.The localview, on the otherhand,requiresthat indicesbe treatedcarefully
dependingon whetherthey meana global or local index,but the local view moreeasily
coexistswith static datastructuresand systematicuseof COMMON in existingcodes.
Becauseof this,the localview wasadoptedfor theMM5 parallelization.

4. PARALLEL LIBRARY: RSL

132

Inner ring: Original sour_

Outer ring: Moddfi_ som'c¢

Areas of identical colors indicale no change

I _ / 13600) lnfrasmlciure

(3311 /16717] FDDA
FDDA _ M5 t

(73/2311) 2530i

Non-parallel view DM-Parallel user's view

Figure 1 Impact on source

RSL is a parallel mntime system library for implementing regular-grid models with nesting

on distributed memory parallel computers. It is used to encapsulate many of the lower-level

parallel mechanisms that, otherwise, would require extensive addition and modification to the
model source code:

• Domain specification, decomposition over processors, and remapping

• Intra-domain communication (stencil exchanges)

• Inter-domain communication (nest forcing and feedback)

• Local computation on each processor subdomain
• Distributed I/O

RSL and its use in parallelizing MM5 has been described previosly (Michalakes, 1997b,c).

Although the library eliminates a large amount of explicit parallel mechanism in the code, its

use still requires that the code be modified to compute over local processor subdomains

(using either local or global views described above). Therefore, additional encapsulation and

automation is required for a fully same-source approach.

5. SOURCE TRANSLATOR: FLIC

Even with parallel libraries, modifications for local address space computation must be made

for distributed memory. Hitherto, modifications had been made manually and appeared

explicitly as changes to the source code. The same-source approach transfers the

responsibility for making these changes to an automatic tool, the source translator, and in the

process removes these changes from view of code developers, maintainers, and users.

Translations for distributed memory, cache performance, and computational restructuring
include: i

133

Performance

30 40 50 60 70

Pm

Hurricane Opal Performance
1aa_alr3as, _ 0,n - 3,422 Mop_

205x'I 60)(:35, 151on - 29,S00 Mop/step

23Sx235X35,Siren- 152,042 Mop,/nq:_

•-,,- sGnohm, _n_ aommn
'-'m-- IBM SP2, U'_ dorr_n

IBM SP2, I

.... IBM SP2, 2 nuts

Figure 2. Single and multi-domain performance.

¢" Identification and translation of loops over decomposed dimensions,

¢" Automatic conversion of loop-invariant expressions indexing decomposed dimensions of

model arrays (global to local),

¢" Automatic conversion of loop-variable expressions used to test position in the global

domain, e.g. for boundary conditions (local to global),

Q Automatic conversion of loop-variable expressions whose values are used within a

computation, e.g. computing distance between two points in the logical domain based on

their indices (local to global),

ca Automatic insertion of global and local array dimensions into argument lists of

subroutines and associated call statements (especially with global view),

ca Automatic disambiguation of expressions used to dimension arrays (local) from loop

range expressions,

ca Automatic interprocedural data dependency analysis,

•/ Automatic array index reordering,

ca Automatic loop restructuring, and

ca Automatic index algebra to move non-local references to the righthand sides of

assignement statements.

We exploit a useful dichotomy in applying source translation to the parallelization task to

provide an incremental development path. This is as follows: communication is hard to

design but is easy to implement with almost no impact on the source code. Computational

restructuring, on the other hand, is straightforward and mechanical, but requires extensive

error-prone modification to the source code. Therefore, for parallelizing a code with a

134

minimum of effort and source code impact, there is an advantageto automating
computationalrestructuringtasks,even if it is necessaryto defer automaticdependency
analysisfor asubsequentphasebecausesometoolsarestill underdevelopment.

The FortranLoop andIndexConverter(FLIC) (Michalakes,1997a)is a Fortrancompiler
with a specialpurposeback-endfor generatingthe modifiedcode.Becauseit employsfull
lexical,syntactic,andsemanticanalysisof theinput Fortran,it is ableto transformthecode
with minimal direction.FLIC examinesarrayreferenceswithin loopsandinferswhich loops
areoverdecomposeddimensions,it uncoversinstanceswheredecomposeddimensionsare
indexedby loop-invariantexpressionsandgeneratesglobalto localindextranslations,andit
uncoversinstanceswhere expressionsof parallel loop variablesareused in conditional
expressionsandgenerateslocalto globalindextranslations.

6. RESULTS

The impact on software is extremelysmall, especiallyfrom the point of view of the
nonparalleluser. Of the32,000lines in themodelthathavebeenaddressedsofar, theUNIX
diff utility reports504lines aredifferent (left half of Figure 1). This view of the code is
significantbecausechangesareout of the way of non-parallelusersand codedevelopers.
Oneneednot eveninstalltheDM parallelcomponents,in whichcasethemodelis effectively
theMM5 codeasit existstoday.

The right half of Figure 1 showsthe paralleluseranddeveloper'spoint of view: theactual
numberof changesfor distributedmemory. Physicsis virtually unaffected:only 96 of the
total 13,495 lines in the parallelizedsubsetare different. Dynamics, which includes
communication,is affectedslightly more:287 linesof a total 2,541. Infrastructure,which
includesI/O andinitialization,effectsonly 3,300of a total 16,700. This is due largely to
changesrelatingto distributedI/O, somethingFLIC doesnotaddress. Similarly, theFDDA
nudging code is affectedbecauseit also includesI/O and severallarge data reduction
operationsthatFLIC doesnot,atpresent,handle.

Figure2 andFigure3 showrecentpreliminaryperformanceresultsusingtheMM5 Version2
Release8 mode. The resultsweregatheredusingtheIBM SPat Argonneandthe Silicon
GraphicsOrigin 2000 at the Universityof Illinois (NCSA). Timings on the Origin were
performedin dedicatedusermode(exclusiveaccess);exclusiveaccessto the processorson
theSPwasprovidedby thegang-scheduler.Performancedatafor othersupportedplatforms-
the CrayT3E andFujitsuVPP300- wereunavailableat thetime this paperwasprepared.
HurricaneOpaldatawasusedto initialize theruns. The box in Figure2 showsgrid sizes,
resolutions,andcostin floatingpoint operations(times 10_)percoarsedomaintime stepfor
non-nested,singlynested,anddoublynestedcases.

Runsusinga singledomain(non-nested)wereconductedto assessperformanceandscaling
of thecodein distributed-memoryparallelmodeonfrom 1through64processorsof theIBM
SP (130Mhz Power2Superscalarthin nodeswith TB3 switch interconnection)andfrom 1
through60processorsof theNCSA Origin2000. Themodelrunsat a rateof 63Mflop/sec

135

SGI Origin 2000
Performance Hurricane Opal Performance

109xl 17x3S, 4S I=n - 3,422 Mop/stop

SOOO

4500

1000-

o I 0 20 30 40 SO 60 70

Figure 3. Shared versus distributed memory

performance.

on one SP processor versus 118 Mflop/sec on one processor of the origin. On 64 SP

processors, the model ran at 3063 Mflop/sec; on the Origin, 4515 Mflop/sec. Parallel

efficiency (speedup/P) from 1 to 60 processors on the Origin was 63 percent. IBM SP scaling

is super-linear from 1 to 4 processors because of memory effects; therefore a parallel

efficiency of 61 percent was calculated from 4 to 64 processors (speedup/P/4). This translates

to 14 hours for a 36 hour forecast on one SP processor; 7.7 hours on one processor of the

Origin. Running in parallel, the estimated forecast times (exclusive of I/O) are 30 minutes on

64 SP processors and 12 minutes on 60 Origin processors. Singly and doubly nested timings

on the SP are shown in Figure 2; performance is actually slightly better because the nested

grids are much larger than the coarse domain and therefore run more efficiently.

Figure 3 shows a comparison between shared-memory and distributed memory MM5 runs on

the SGI Origin. The distributed memory code is 63 percent efficient from 1 to 60 processors,

whereas the shared memory version is only 46 percent efficiency from 1 to 32 processors.

Pure distributed memory programs appear able to exploit the low-latency high-bandwidth

interconnect to provide scalable performance.

7. CONCLUSION

We have described an effort that will expand the set of architectures that will run the official

NCAR version of the MM5, providing the benefit of scalable performance and memory

capacity for large problem sizes to users with access to distributed memory parallel

computers. The same-source approach uses source-translation technology for adapting MMS,

136

simplifying maintenanceand allowing new physicsmodulesto be incorporatedwithout
modification.Thefact thatMM5 is afully explicitmodel is a convenientsimplificationthat
may not be availablein other models,manyof which employ implicit methodsin their
horizontaldynamics(Baillie et al, 1997).Futurework involvesadaptingandexpandingthis
approachto incorporateothercomputationaltechniques,includingspectral,semi-implicit,
andothermethodswith non-localdatadependencies.Anotherfocuswill be on augmenting
sourcecode analysisand translationto addresscacheand otherperformanceportability
issues.Same-sourcetoolsandtechniquesprovidea reasonableapproachto obtaininggood
performanceover therangeof high-performancecomputingoptionsfrom a singleversionof
themodelsourcecode.

REFERENCES

Baillie, C., J. Michalakes, and R. Skein, 1997: Regional Weather Modeling on Parallel Computers, Parallel

Computing, (to appear, December 1997).
Cipra, B. A., 1997: "In scientific computing, many hands make light work," SIAM News, 30.
Foster, I. and J. Michalakes, 1993: MPMM: A Massively Parallel Mesoscale Model, in Parallel Supercomputing

in Atmospheric Science, G. R. Hoffmann and T. Kauranne, eds., World Scientific, River Edge, New

Jersey, pp. 354--363.
Friedman, R., J. Levesque, and G. Wagenbreth, 1995: Fortran Parallelization Handbook, Applied Parallel

Research Inc., Sacramento.
Goldman, V. and G. Cats, 1996: Automatic adjoint modeling within a program generation framework: A case

study for a weather forecasting grid-point model, in Computational Differentiation, M. Berz, C. Bischof,
G. Corliss, and A. Griewank, eds. Society for Industrial and Applied Mathematics, Philadelphia, PA,

1996, pp. 184-194.
Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A Description of the Fifth-Generation Penn State/NCAR

Mesoscale Model (MM5), Tech. Rep. NCAR/TN-398+STR, National Center for Atmospheric Research,

Boulder, Colorado.
Hempei, R., and H. Ritzdorf, 1991: The GMD Communications Library for Grid-oriented Problems, Tech. Rep.

GMD-0589, German National Research Center for Information Technology.
Kohn, S. R., and S. B. Baden, 1996: A Parallel Software Infrastructure for Structured Adaptive Mesh Methods,

in Proceedings of Supercomputing '95, IEEE Computer Society Press.
Kothari, S., 1996: Parallelization Agent for Legacy Codes, draft technical report, Iowa State University, Ames,

Iowa, 1996. See also http://www.cs.iastate.edu/kothari.
Michalakes, J., 1997a: FLIC: A Translator for Same-source Parallel Implementation of Regular Grid

Applications, Tech. Rep. ANIJMCS-TM-223, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, Illinois.

Michalakes, L, 1997b: MM90: A Scalable Parallel Implementation of the Penn StateeTVCAR Mesoscale Model

(MM5), Parallel Computing (to appear); also preprint ANL/MCS- P659-0597.
Michalakes, J., 1997c: RSL: A Parallel Runtime System Library for Regional Atmospheric Models with Nesting,

Proceedings of the IMA workshop "Structured Adaptive Mesh Refinement Grid Methods," (to appear);
also preprint ANL/MCS-P663-0597.

Parashar, M., and J. C. Browne, 1995: Distributed dynamic data-structures for parallel adaptive mesh-

refinement, Proceedings of the International Conference for High Performance Computing, pp. 22--27.
Rodriguez, B., L. Hart, and T. Henderson, 1995: A Library for the Portable Parallelization of Operational

Weather Forecast Models, in Coming of Age: Proceedings of the Sixth ECMWF Workshop on the Use
of Parallel Processors in Meteorology, World Scientific, River Edge, New Jersey, pp. 148--16 I.

iChecked items are those implemented in FLIC or related transhfion tools in use within the paralld MM5 effort.

137

138

SIMULATIONS OF GRAVITY WAVE INDUCED TURBULENCE

USING 512 PE CRAY T3E

Joseph M. Prusa

Iowa State University, Ames, IA

Piotr K. Smolarkiewicz 1

National Center for Atmospheric Research,2Boulder, CO

Andrzej A. Wyszogrodzki

University of Warsaw, Warsaw, Poland

A 3D nonhydrostatic, time-dependent Eulerian/semi-Lagrangian Navier-Stokes solver

has been employed to simulate gravity wave induced turbulence at mesopause altitudes.

The solver is suitable for modeling a wide range of natural atmospheric flows (broadly

documented in the literature). In the present study, the semi-Lagrangian option of

the message-passing implementation of the solver was used. This work extends our

earlier 2D study reported in the literature to three spatial dimensions while maintaining

fine resolution required to capture essential physics of the wave breaking. Present

calculations, which would be difficult on standard vector supercomputers, have been

performed on the 512 processor Cray T3E machine at the National Energy Research

Scientific Computing Center (NERSC) in Berkeley. The physical results of this study

are spectacular and clearly demonstrate advantages of highly parallel technologies.

In this paper, we briefly outline the physical outcome of the study, while focusing

on selected computational aspects of the project. In particular, we compare the

relative model performance across several machines (Crays T3E and T3D, Hewlett-

Packard Exemplar SPP2000 and Cray PVP systems) using both MPI and Shmem

communication software (where applicable).

1. Introduction

In recent years, a number of new machines based on massively parallel processing

(MPP) technology have become available for large-scale computations in science and

engineering. Among the existing MPP computers, those consisting of hundreds or

thousands of processors communicating via explicit message passing implementations

of application programs appear particularly competitive with conventional vector

supercomputers. On the other hand, there are a number of important yet sufficiently

small problems that can be addressed successfully using vector supercomputers, single

processor scalar workstations, or even modern PCs.

1 Corresponding author address: Piotr K. Smolarkiewicz, NCAR, PO Box 3000,

Boulder, CO 80307-3000. E-mail: smolar@ncar.ucar.edu

2 The National Center for Atmospheric Research is sponsored by the National Science

Foundation

139

In order to best utilize the wide rangeof computing resourcesnow available for science
and engineering,application codesrequireahigh degreeof portability betweendifferent
systems. To appreciate the significanceof portability, consider that in the area of
computational fluid dynamics, numerical research models usually solve systems of
nonlinear partial differential equations on discrete meshesconsisting of millions of
points over O(102) -O(104) time steps (iterations). The associated computer programs

consist of O(103) - O(10 s) lines of code, and often evolve on a daily basis. Clearly,

this makes supporting several versions of the same model cumbersome, expensive, and

overall impractical. In this paper we emphasize the portability issue and report on

our MPP model performance across several machines representative of the modern

computing environment.

The MPP Fortran code adopted for the purpose of this study has been already

described in the literature [1, 2]. The underlying solver is an incompressible-type

fluid model cast in a curvilinear rotating framework, with a subgrid-scale turbulence

parameterization and water substance phase-change processes included. The distinctive

aspect of our model [1, 2, 16] is its numerical design which incorporates a two-

time-level; either semi-Lagrangian [13] or Eulerian [14], nonoscillatory forward-in-time

(NFT) algorithm. The finite-difference approximations to the resulting trajectory-

wise or point-wise integrals of the governing fluid equations are at least second-order-

accurate. The Eulerian algorithm requires the traditional CFL stability condition,

limiting thereby local communications to nearest neighboring points on the mesh; the

semi-Lagrangian algorithm admits Courant numbers well exceeding unity and results

in irregular communications patterns extending over a number of grid points. In order

to take full advantage of MPP systems, the solver has been implemented using a

single program multiple data (SPMD) message passing approach. In [1], the authors

evaluated the performance of the prototype dynamic core of the model (ideal Boussinesq

fluid) for the two optional formulations of the model algorithm and two distinct

parallelization approaches (High Performance Fortran, HPF, vs. message passing).

In [2], the earlier study was extended to a more complete model (i.e., one including

planetary rotation, phase change processes, and subgrid-scale turbulence schemes)

suitable for simulating natural atmospheric flows. There, the authors quantified the

overall performance of the complete model, as well as the relative performance of

its distinct components (transport, elliptic pressure solver, phase-change modeling,

subgrid-scale parameterization, etc.), on a distributed memory Cray T3D.

In this paper, we demonstrate a satisfactory performance of the model on a large

scientific application, using one of the most complicated options of the model algorithm.

As the application addressed is much too large to be executed straightforwardly on

other machines available to us, the accompanying studies of the model performance

exploit either an abbreviated version of this same experiment, or a less extreme physical

scenario of large eddy simulation (LES) of convective planetary boundary layer using

the default Eulerian variant of the model algorithm (cf. [18]).

140

2. Model Description

The numerical model used in this study has been described in [1, 2, 6, 10, 16, 18]. It is

representative of a class of nonhydrostatic atmospheric models that solve the anelastic

equations of motion in the standard, nonorthogonal terrain-following coordinates.

Below we comment briefly on the essential aspects of the model design while referring

the reader to the earlier works for further details.

The conservation laws for the dependent variables of the model may be all written in

the compact form
Op*¢

0-"-_ + V. (v*¢) = p*F(g2). (1)

Here ¢ denotes any of the three Cartesian velocity components (u, v, w), the potential

temperature, water substance mixing ratios (vapor, cloud water, rain, etc.), as well as

turbulent kinetic energy; p* = _G is the reference (Boussinesq type) density profile

premultiplied by the Jacobian of the coordinate transformation (from the Cartesian to

the terrain following, time-dependent, curvilinear framework). The advective velocity

v* - p*V -- p*(u, v, w), with w denoting the "vertical" component of transformed

(contravariant) velocity, satisfies the anelastic mass conservation law

°P--A*+ v. v* = 0. (2)
Ot

Note that the time derivative must be retained in (2) because of the time variation

in the coordinate transformation [10]. The associated F(@) terms on the rhs of (1)

are, in general, functionals of the vector @ of all dependent variables ¢, and they

represent the sum of the resolved and subgrid-scale parts of the total forcings. In

the momentum equations, the resolved terms include pressure gradient forces, Coriolis

accelerations, buoyancy force, as well as wave absorbing devices in the vicinity of open

boundaries. In the thermodynamic equations, the resolved terms include heat and

moisture sink/sources due to the phase changes of water, and the wave absorbers

near the boundaries. The subgrid-scale (SGS) forcing terms are fairly complex but

standard. We employ a turbulence model based on the prognostic turbulent kinetic

energy equation [11] or, optionally, its abbreviated version--the celebrated Smagorinsky

model.

The integration of the discrete equations over a time-step uses a regular unstaggered

mesh. We write the finite-difference approximations to (1) in the compact form

¢_+1 = LE(_2) + 0.5AtF_ +1 • (3)

Here, LE denotes either the advective semi-Lagrangian or flux-form Eulerian NFT

transport operator; ¢ - Cn + 0.5AtF_; and indices i and n have the usual meaning of

the spatial and temporal location on a (logically) rectangular Cartesian mesh.

141

Completion of the model time step requiresthe F n+l values of forcings in (3). Gravity

wave absorbers, Coriolis accelerations, condensation, and pressure gradient forces are

treated implicitly; whereas subgrid-scale terms, and slow phase-change tendencies (such

as rain formation or evaporation [6]) are treated explicitly (i.e., F _+1 is predicted from

earlier values of dependent variables). The implicitness of the pressure gradient forces

is essential as it enables projecting the preliminary values LE(¢) onto solutions of the

continuity equation (2), [4]. Here, it requires a straightforward algebraic inversion of the

linear system composed of equations (3), and the formulation of the boundary value

problem for pressure implied by the continuity constraint (2). The resulting elliptic

equation is solved (subject to appropriate boundary conditions) using the generalized

conjugate-residual approach--a preconditioned nonsymmetric Krylov solver (see [15-

17] for further details). The numerical stability of computations is controlled by proper

limiting of Courant and Lipschitz numbers C =11 AtV/ A X II and L =11 At(OV/Ox) II,

respectively, for the Eulerian and semi-Lagrangian variants of the model.

3. Parallelization versus portability strategy

In [1], we have evaluated the relative merits of message passing and HPF strategies

of parallelization. Overall, we have concluded that the message passing code runs 2.5

and 1.8 times faster (on Cray T3D) than the HPF code, respectively, for the Eulerian

and semi-Lagrangian versions of the model. Consequently, we settled on a message

passing approach. We used a two dimensional horizontal decomposition of the grid;

and explicitly dimensioned each array to contain a subgrid of the total array plus extra

space for a copy of the neighboring processors' boundary cells. This is a common

technique (cf. [7]) where the extra boundary points are often referred to as "halo cells"

or "halos". They are used to minimize communications needed when finite difference

operations are performed. The number of halo cells depends on the local stencils

used in the model algorithm and on the maximum Courant number. In simulations

reported here, C _< 3. When necessary, the halo cell information is updated by having

each processor exchange information with its neighbors. This communication process

is further economized by admitting only a partial update of halos with their selected

portions being exchanged between the processors as implied by the finite-difference

algorithms employed. Reduction operations such as sums and extrema, unavoidable in

fluid models, require exchanging informations globally between all processors.

To exchange messages between processors, in general, we use the most portable and

widely supported MPI (message-passing-interface) standard. However, on Cray's T3D

and T3E machines we optionally employ Shmem (shared-distributed memory data-

passing support) library routines.

In order to facilitate portability of the code, we use these same halo-update subprograms

on the distributed or shared-memory parallel architectures, as well as on a single

processor machines. On single-processor and shared-memory platforms, all updates

142

are elementary. They employ oneprocessorfor the total domain dimension with halo
usedto set appropriate conditions at the domain boundaries. In this case,there is no
need for an explicit message-passingprotocol, and only selectedparts of total arrays
are rewritten to halo cells on this sameprocessor.

In regards to the portability issue, input/output (I/O) operations raise someserious
concerns. In general, outputed fields should be independent of the machine size
and number of parallel processorsused in simulations. Files written by programs
running on N processors should be readable to applications running on M processors.

This is convenient for debugging and is especially important for postprocessing (e.g.,

diagnostics, visualizations, etc.) of large computing projects. Furthermore, the output

files must be also readable on different platforms with different binary file formats

(Cray floating-point, Cray 64-bit IEEE, standard 32-bit IEEE, etc.). In our code, one

processor performs all I/O communication operations by collecting and distributing

arrays between other processors. Relative efficiencies of these I/O operations depend

on the particular computer at hand and are important to the overall model performance.

Keeping the total grid array on one processor does have the disadvantage of limiting

the size of the apphcation. But this is more than compensated by simplicity in coding,

and seems to offer an optimal performance.

4. Physical problem

Our test problem for the Cray T3E was to simulate the evolution of an internal

gravity wave packet generated by a narrow, 2D squall line at tropopause levels and it's

subsequent breaking near the mesopause. The squall line disturbance was Gaussian in

its spatial-temporal evolution, with a maximum forcing amplitude of 200 m at t -- 2 h.

The basic state was one of uniform zonal wind (uo -- -32 ms-l), stability (with

Brunt-Viiis§.ll/i frequency N = 0.02 s-l), and density scale height (H = 6.63 km).

Through a dispersive mechanism this basic state and forcing favor the development of

a monochromatic, 2D primary (convective) instability with near unit aspect ratio. For

a comprehensive description of the basic state, run set up, and results and analysis of

the ensuing convective instability, see [10]. The problem is of interest for at least two

reasons. First, the middle atmosphere is known to be far from radiative equilibrium

at mesopause altitudes and wave forcing is the main factor behind this phenomenon

[5]. Determination of the extent to which gravity wave breaking in particular is

responsible has great relevance to a complete understanding of the process and it's

parameterizations. Second, numerical simulation of turbulence is of considerable

theoretical interest. The wavebreaking in this study generated a highly inhomogeneous,

anisotropic turbulence. This turbulence developed completely from a very smooth

linear wavefield in accord with the physics of a wave packet propagating into a very

deep model atmosphere--it was not initialized according to any a priori turbulence

model nor constrained by domain size (which can limit wave-wave interactions [12]).

Some idea of the inhomogeneity of the wavefield can be gleaned from Fig. la which

143

showsa contour density plot of the potential temperature (8) field. The vertical plane
of this plot is perpendicular to the zonal flow. It showsthe wavefieldto be homogeneous
in the spanwisedirection (left to right) but inhomogeneousin the vertical (note that
the complete altitude range is 15 _<z < 125km; the regions above and below that
shownin Fig. la arevery smoothand characterizedby constant stratification). Similar
inhomogeneityoccurs in the zonal direction [10].

The computational grid consistedof 544× 80× 291points with a resolution of 380 m.
To savecomputer resources,the problem wasexecutedin 2D on a 544 × 1 x 291 grid
until 120 minutes of the physical time. At 120 minutes, the 3D domain was created
by repeating the solution in the spanwisedirection y, and seeding the buoyancy field

with a small amplitude (1% of the basic state) white noise. Further computations

continued in five minute portions of physical time. The lateral zonal and spanwise

boundaries were periodic with lateral zonal sponges. A specially tuned vertical sponge

was also employed, such that it approximated the effects of atmospheric viscosity. No

explicit sub-grid scale viscosity was employed in this simulation. Instead, the removal

of energy at the grid scale was effected with the monotonicity option in the interpolator.

This option invokes a topological constraint whereby no two streamtubes are allowed

to intersect. Essentially energy is removed at the grid scale to the extent needed to

avoid local negative entropy production. This corresponds well with the Kolmogorov

microscale which is the same order of magnitude as the grid size at the initial altitude

of breaking. The time chosen for 3D seeding was carefully selected based upon data

generated with earlier 2D [10] and 3D [9] experiments. The run was terminated at 180

minutes because at this point breaking had consumed the zonal extent of the domain.

The evolution of the turbulence was assessed by examining 1D energy spectra computed

from t? (approximate equipartition occurs even during wave breaking [9]). In order to

place the averaging regions in the turbulence, the zonal and spanwise spectra were

computed from the average of local field data centered at 100 km altitude, while

vertical spectra fields were centered at a zonal location of-35 kin. Furthermore, the

spanwise averages were restricted to the zonal range -60 < x < -30 kin. All raw

spectra were Hamming-Tukey smoothed, which acts to minimize the aliasing effects of

the finite domain size, [3]. The inhomogeneity of the wavefield caused severe aliasing

problems in the zonal (and vertical) spectra at intermediate to high wavenumbers. In

particular, the localization of high wavenumber features to a ,,_ 50 km zonal (,-, 30 km

vertical) sub-doma/n caused (i) severe Gibb's oscillations, and (ii) excess power at the

highest wavenumbers. These spectra were further processed by (i) integrating them

over a wavenumber variable bandwidth from k - 1 km -1 to the Nyquist wavenumber

of 8.27 km -1, and(ii) employing a differential correction algorithm. This algorithm

corrected the full-domain spectra at the highest wavenumbers so that they would show

the same power law tendencies as an unaliased, sub-domain spectra computed from

fields that lay completely within the turbulence. The zonal spectra shown in Fig. lb

depict both the highest and lowest wavenumber features with fidelity.

144

Figure lb shows the evolution of the zonal energy spectra. At 125 minutes energy
is concentrated at k = 0.40 km -1 (in(k) = -0.9), corresponding to)_z = 15.5 km.

This fundamental is due to linear growth of the gravity wave packet as it ascends. At

k = 0.80 km -1 (ln(k) = -0.23) a much weaker second harmonic of the fundamental can

also be seen. This second harmonic is due to nonlinear effects, and is a harbinger of the

primary convective instability which is about to occur. For the given basic state, linear
waves have an evanescent limit at k -- 0.62 km -1, this corresponds to the very sharp

drop off between the fundamental and second harmonic. At later times linear dispersion

causes the fundamental to broaden and peak at lower wavenumbers (longer waves are

slower and take more time to propagate upwards [10]). With the onset of vigorous

wave overturning, a buoyancy subrange [19] with a slope of-3 appears just upscale

of the fundamental (obvious by 140 minutes). At the highest wavenumbers there is

negligible energy until the primary instability occurs. With the onset of a secondary

(3D) instability, a tendency towards a -5/3 slope can be seen. The critical buoyancy

wavenumber that separates the two regimes decreases from kb : 4.0 to 1.8 km -1 as

t increases from 140 to 180 minutes, respectively. This compares favorably with the

earlier J90 results which yielded kb = 2.1 km -1 at 150 minutes [9]. The experimental

value of kb may also be compared with the scaling result, kb "-' N3/eo "-' 1.6 km -1 [19],

where eo is the turbulence dissipation rate. Finally Fig. lb clearly shows another -5/3

power law regime at the lowest wavenumbers at earlier times (125 to 145 minutes). This

is consistent with a 2D reversed energy cascade that is transferring energy into the zonal

mean fields [8]. The Eliassen Palm flux divergence has its maximum value precisely in

this time interval, of order 0.02 ms -1, at breaking altitudes. After 150 minutes, the

energy spectra flatten out at the lowest wavenumbers. At this point wave breaking

has disrupted the linear wave field sufficiently that it lacks the large scale coherence

needed to effectively modify the zonal average state. Vertical spectra (not shown) show

very similar evolutionary tendencies, with the only significant difference being a lack

of the -5/3 power law regime at the lowest wavenumbers. Spanwise energy spectra

(not shown) show very different evolutionary tendencies, however. The spectrum at

125 minutes is quite fiat and 15 orders of magnitude below the fundamental of the

zonal spectra. Growth of spanwise energy is negligible for the first 10-15 minutes after

the 3D seeding. In the next 5-10 minutes spanwise spectral energy explodes as the

secondary instability undergoes a period of exponential growth. An inertial subrange,

characterized by a -5/3 power law appears at the highest wavenumbers. As t continues

to increase, this subrange expands to lower wavenumbers, until at 180 minutes, most

of the spectrum lies within it.

5. Model performance results

The experiment described in the preceding section has been performed on the

512 processors Cray T3E machine at NERSC. Table 1 outlines the history of its

computational cost versus the overall model performance (measured by the wallclock

time) as functions of the simulated physical time; time step At; number of time steps

145

Nt and average number of iterations Nit in the elliptic Krylov solver (per timestep) per

5 minute portion of the experiment. In addition to summarizing elementary aspects

of the model efficiency, this table illustrates an important point that the overall model

performance (as well as the relative performance of various model components such as

advective transport, pressure solver, etc.; see [2] for a discussion) is an elusive entity, as

it is a complicated function of the simulated flow. Consider, for instance, that at the

onset of vigorous wave breaking at 145 rain., the accuracy arguments [10, 13] dictate

halving the time step. Yet, as the flow becomes more quiescent following the onset

of breaking, the elliptic solver converges (see [17] for a discussion of the convergence

criteria in function of the model algorithm) using only a third as many iterations.

TABLE 1. Gravity-wave breaking experiment on 512 PE Cray T3E. The history of
the wallclock and CPU time (sec.) as functions of the simulated physical time (min.),

time step At (sec.), and average number of iterations in the elliptic pressure-solver per
5-rain. portion of the experiment second portion is

physicaltime At Nt Nit wallclocktime User CPU

125-130 5 60 32 1156 583159

135-140 5 60 31 1123 566583

145-150 2.5 120 19 1500 757776

155-160 2.5 120 15 1379 696690

165-170 2.5 120 12 1278 645268

175-180 2.5 120 11 1212 611210

The gravity-wave-breaking experiment was much too large to be used as a benchmark

for any systematic performance studies across various machines. Also, our limited

resources at NERSC precluded any 'lavishness' and left little room for additional tests

beyond the production runs. As a result, the relative performance issues were addressed

using either a 2D variant of the experiment, or our earlier LES calculations of convective

boundary layers, using the Eulerian variant of the model with the nonoscillatory option

of the MPDATA algorithm for the LE operator in (3), [2, 18].

The results of the model-performance analysis are gathered in Tables 2-4. They further

demonstrate that overall model performance is not only a function of the flow but

also depends upon the machine, communication software, compiler options, model

algorithms, and size of the problem. Table 2 describes the machines used in this study,
whereas Table 3 addresses the scalability issue exploiting a 2D variant of the gravity-

wave experiment (544 x 1 × 291 mesh with At -- 5 s and Nt = 1800). These simulations

were performed on 16 and 32 processors only. On HP and T3D, the resulting speedups

are quite good regardless of the communication software employed (consistent with

our earlier experience [1, 2]), but they appear relatively poor on T3E-900 using either

146

communication software. A similar analysisbut using a larger 3D problem of the LES
boundary-layer experiment (Table 4) shows,for the larger number of Cray processors,
more respectableresults closerto ,,_ 1.8 value concluded in our earlier studies [1, 2].

TABLE 2. Machines employed in model performance studies. Columns two to five
show the number of processors, location of the machine, nominal memory, and typical
measured performance (Mflops/PE), respectively. *Experiments performed in the

double 64-bit precision, to match the Cray standard, tInterdisciphnary Center for
Mathematical and Computational Modelin_l University of Warsaw 7 Poland.

machine # PE location

T3E-900 512 NERSC

T3E-600 32 ICM t

T3D 128 NCAR

HP* 64 NCAR

Cray J932se 24 NCAR

NCARCray J916 16

memory performance

256 MB/PE 150-300

128 MB/PE 100-200

64 MB/PE 15

8 GB 120

8 GB 60

2 GB 6O

TABLE 3. Scalability results using 2D semi-Lagrangian simulation of the gravity wave.
The "Oi" symbol in the first column refers to the compiler.optimization level z The
second column specifies the commumcatlon sottware employed. _;ommns _ ana _ snow
the wallclock time (sec.) of the entire experiment, whereas column 4 shows the resulting

speedup (12 I.

machine comm. soft.

HP O1 MPI 22354

HP 02 MPI 7192

T3D Shmem 9911

T3E-900 Shmem 4365

5325T3E-900 MPI

16 PE /_ 32 PE

1.93 11571

1.91 3758

1.88 5266

1.58 2768

1.50 3542

The observed discrepancies are not necessarily surprising. Since the simulated turbulent

flows are highly chaotic and unpredictable, the model algorithm can react to even such

minor changes in the code setup as the number of processors or the compiler employed. 3

This sensitivity is insignificant insofar as the physical issues are concerned, but it can

quite substantially affect model performance.

3 The different execution of sums inherent in elliptic Krylov solvers can affect both the

evaluated pressure field and the number of the iterations required.

147

TABLE 4. Scalability results using 3D Eulerian simulations of convectiveboundary
layer. #The equivalent semi-Lagrangian run included for comparison. *J90
autotaskin_, shared

machine comm. soft.

HP O1 MPI

HP 02 MPI

HP O3 MPI

HP 04 MPI

T3D Shmem

T3D# Shmem

T3E-900 Shmem

T3E-900 MPI

T3E-600 Shmem

T3E-600 MPI

J932se* none

noneJ916"

as oppose to

8 PE

dedicated / mode, runs; t24 PE run.

/_ 16 PE /_ 32 PE /_ 64 PE

24308 1.89 12836 1.50 8542 1.60 5325

8912 1.65 5395 1.63 3307 1.44 2299

6516 1.64 3969 1.43 2777

6463 1.54 4179 1.46 2859

16622 1.87 8866 1.61 5492 1.71 3164

15569 1.78 8751 1.79 4876

3199 1.43 2236 1.77 1260

3555 1.43 2476 1.63 1516

9127 1.92 4735

7471 1.87 3995

14087 8545 4987 t

7696 7039

Table 4 contains a number of hints useful for the interested practitioner. We draw

attention to a few points that are especially noteworthy. The results from autotasking

runs on Crays J932se and J916 depend on the actual state of the machine, so they should

be viewed only as examples of possible overall performances; however, in our experience,

the wallclock times attained with maximal number of processors are representative.

The semi-Lagrangian run is about 50% more expensive than the Eulerian run at the

same At (here C<I). However, in our breaking gravity wave problem, much larger

time steps are used (with C < 3) and, more important, the semi-Lagrangian algorithm

is more accurate as it treats equally the incompressible and compressible numerical

regimes of flow, dictated by the specified time-dependency of the problem geometry.

6. Remarks

The horizontal grid decomposition employed for the message-passing MPP

implementation of our model was dictated, in essence, by the physics of natural

geophysical flows that makes the vertical (gravity) direction distinct. Coincidently,

it has a purely computational advantage of admitting efficient applications of this same

148

model algorithm and code designon different types of machinesincluding distributed-
and memory-shared aswell assingle-processorarchitectures.

Although our MPP model has been designed to run efficiently on the distributed
memory architectures, it appears to perform reasonably well on standard vector
supercomputers. Considerthat the original versionof the samemodel, optimized for the
shared-memoryCray vector machines,achieveson average65- 90Mflops per processor
on J90s,dependingon the numberof processorsandthe application addressed;whereas,
the MPP code is only slightly slower on thesemachineswith its speedfalling in the
range of 60 - 85 Mflops/PE.

Regardlessof all the objective model-performancemeasuresdiscussedin this paper,
the singlemost important outcomeof this study cannot beoverstated: Our earlier, one
order of magnitude smaller but otherwiseanalogousto the 512 PE Cray T3E gravity-
wavesimulation, experimentsperformedin the autotasking modeon 24processorCray
J90 at NCAR, used to take several days (this includes waiting in economyqueues)
to accomplish simulation of 5 minutes of the physical time. Present experiments, on
the order of magnitude larger grid, wereexecutedessentiallyovernight for the same5
minutes period of simulated physical time!

Acknowledgements. We thank William Anderson for his advice on parallelization
issues and comments on an earlier version of the manuscript. This work has been

supported in part by the Department of Energy "Computer Hardware, Advanced

Mathematics, Model Physics" (CHAMMP) research program. The use of the 512 PE

Cray T3E at NERSC and of the 32 PE Cray T3E at ICM is gratefully acknowledged.

REFERENCES

1. Anderson, W.D., and Smolarkiewicz, P.K., A comparison of High Performance
Fortran and message passing paraUelization of a geophysical fluid model. In
Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced
Computers, Schiano et al. Editors, Elsevier Science, 384 (1997).

2. __, V. Grubigid, and P.K. Smolarkiewicz, Performance of a massively parallel
3D non-hydrostatic atmospheric fluid model, in Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
PDPTA '97, Las Vegas, Nevada, USA, June 30-July 3, Ed. H.R. Arabnia, CSREA,

645 (1997).

3. Bath, M., Spectral Analysis in Geophysics. Developments in Solid Earth Geophysics,
7, Elsevier Scientific Publishing Co., Amsterdam, 563p (1974).

4. Chorin, A.J., Numerical solution of the Navier-Stokes equations. Math. Comp., 22,

742 (1968).

5. Garcia, R.R, and S. Solomon, The Effects of Breaking Gravity Waves on the
Dynamics and Chemical Composition of the Mesosphere and Lower Thermosphere.
J. Geophys. Res., 90, 3850 (1985).

149

6. Grabowski, W.W., and Smolarkiewicz, P.K., On two-time level semi-Lagrangian
modeling of precipitating clouds. Mon. Wea. Rev., 124, 487 (1996).

7. Johnson, K.W., Bauer J., Riccardi G.A., Droegemeier K.K., and Xue M., Distributed
processing of a regional prediction model, Mon. Wea. Rev., 122, 2558 (1994).

8. Kraichnan, R.H., Inertial Ranges in Two-Dimensional Turbulence. Phys. Fluids,

10, 1417 (1967).

9. Prusa, J.M., Garcia, R.R., and P.K. Smolarkiewicz, Three-Dimensional Evolution
of Gravity Wave Breaking in the Mesosphere. 11th Con]. Atmos. Ocean. Fluid

Dynamics, Tacoma, WA, J3 (1997).

10. Prusa, J.M., Smolarkiewicz, P.K., and Garcia, R.R., On the propagation and
breaking at high altitudes of gravity waves excited by tropospheric forcing. J.
Atmos. Sci., 53, 2186 (1996).

11. Schumann, U., Subgrid Length-Scales for Large-Eddy Simulation of Stratified
Turbulence. Theoret. Comput. Fluid Dynamics, 2,279 (1991).

12. Scinocca, J.F., The Mixing of Mass and Momentum by Kelvin-Helmholtz Billows.
J. Atmos. Sci., 52, 2509 (1995).

13. Smolarkiewicz P.K., and Pudykiewicz, J.A., A class of semi-Lagrangian

approximations for fluids. J. Atmos. Sci., 49, 2082 (1992).

14. _, and Margolin, L.G., On forward-in-time differencing for fluids: Extension to
curvilinear coordinates. Mon. Wea. Rev., 121, 1847 (1993).

15. _, and _., Variational solver for elliptic problems in atmospheric flows. Appl.
Math. 8J Comp. Sci., 4, 527 (1994).

16. _, and _., On forward-in-time differencing for fluids: An Eulerian/semi-

Lagrangian nonhydrostatic model for stratified flows. Atmos.-Ocean Special, 35,

127 (1997).

17. _, Grubi_id, V., and Margolin, L.G., On forward-in-time differencing for fluids:
Stopping criteria for iterative solutions of anelastic pressure equations. Mon. Wea.
Rev., 125, 647 (1997).

18. _, and Margolin, L.G., MPDATA: A Finite-Difference Solver for Geophysical
Flows, J. Comput. Phys., 140, 459 (1998).

19. Weinstock, J., Theoretical Gravity Wave Spectrum in the Atmosphere: Strong and
Weak Wave Interactions. Radio Sci., 20, 1295 (1985).

150

120;

110_

20

15

--- 10
m

5

180

145

135

min.

(B)

-15 -5 5 15 0 -3 -2 -1 0 1 2

y (km) In(k)

Figure 1. Results from the wavebreaking experiment: (a) contour density plot of In(0) in vertical yz

(spanwise) plane at zonal location x = -35 km at t=155 minutes showing region of vigorously breaking

waves; (b) time evolution of zonal spectral energy from 125 to 180 minutes (straight dashed lines have

slopes of-5/3 and -3).

151

152

An Overview of the Physical-space Statistical Analysis

System Development at the Data Assimilation Office

J. Guo

SAIC/General Sciences Corporation, Laurel, MD
mailstop: Data Assimilation Office, NASA/Goddard Space Flight Center

Code 910.3, Greenbelt, MD 20771

mailto: guo_dao.gsfc.nasa, gov
ot_ce: +1 301 805-8333

fax: +1 301 805-7960

J. W. Larson and P. M. Lyster

Department of Meteorology and Earth System Science Interdisciplinary Center
University of Maryland, College Park, MD

Atmospheric data assimilation is a contemporary scientific discipline for

studying the state of the atmosphere. Its object is to produce an optimal and

physically consistent four dimensional estimate of the state of the atmosphere

using observations from highly diverse sources available irregularly in space and

time. Typical methodologies of data assimilation use numerical prediction mod-

els, such as General Circulation Models (GCM), and objective analysis systems,

such as the Physical-space Statistical Analysis System (PSAS).
PSAS is one of the central components of the Data Assimilation System

being developed at the Data Assimilation Office (DAO), NASA/Goddard Space

Flight Center, for NASA's Earth Observing System (EOS). It has been designed

to replace the traditional analysis scheme used in the earlier version of the DAO's

Data Assimilation System with a state-of-art global statistical analysis scheme
capable of handling operationally a huge and diverse observational data flow,

and to provide the basic computational infrastructure for the DAO research

activities using advanced error covariance models.
To realize its scientific goals, PSAS is being designed to overcome several

computational obstacles, including the computational complexity of solving the

statistical analysis equations for error covariance matrices typically of order

100,000 × 100,000, and the software complexity of supporting advanced error

covariance models accessing a heterogeneous array of information resources.
At the same time, we are also actively exploring the path of implementing

the technology of distributed parallel computing to PSAS in an operational
environment.

Implementing a message passing parallel computing paradigm into an exist-

ing yet developing computational system as complex as PSAS is in many ways

a nontrivial problem. The technical challenges include issues such as reassessing

the system's computational and operational requirements with appropriate so-

lutions, planning and managing a gradual system development path with paral-
lel software development efforts, and particularly, designing software structures

supporting planned but often unspecified future scientific extensions.

153

154

Incorporating Parallel Computing into the Goddard Earth
Observing System Data Assimilation System (GEOS DAS)

Jay Larson

NASA Data Assimilation Office (DAO)

7501 Forbes Blvd., Suite 200, Seabrook, MD 20706

email: j larson©dao, gsf c. nasa. gov

phone: +1 301 805-8334 fax: +1 301 805-7960

Atmospheric data assimilation is a method of combining actual observations with

model forecasts to produce a more accurate description of the earth system than the

observations or forecast alone can provide. The output of data assimilation, some-

times called the analysis, are regular, gridded datasets of observed and unobserved

variables. Analysis plays a key role in numerical weather prediction and is becom-

ing increasingly important for climate research. These applications, and the need

for timely validation of scientific enhancements to the data assimilation system pose

computational demands that are best met by distributed parallel software.

The mission of the NASA Data Assimilation Office (DAO) is to provide datasets

for climate research and to support NASA satellite and aircraft missions. The system

used to create these datasets is the Goddard Earth Observing System Data Assim-

ilation System (GEOS DAS). The core components of the the GEOS DAS are: the

GEOS General Circulation Model (GCM), the Physical-space Statistical Analysis

System (PSAS), the Observer, the on-line Quality Control (QC) system, the Coupler

(which feeds analysis increments back to the GCM), and an I/O package for pro-

cessing the large amounts of data the system produces (which will be described in

another presentation in this session).

The discussion will center on the following issues: the computational complexity

for the whole GEOS DAS, assessment of the performance of the individual elements

of GEOS DAS, and parallelization strategy for some of the components of the system.

155

156

I/O Parallelization for the Goddard Earth

Observing System Data Assimilation

System (GEOS DAS)

R. Lucchesi, W. Sawyer t, L. L. Takacs_ P. Lyster_ J.
Data Assimilation office

NASA/GSFC, Code 910.3

Greenbelt MD, 20771

Tel: +1 301 286-9084

Fax: +1 301 286-1754

Email: lucchesi@da_.gsfc.nasa.gov

t Additional affiliation: University of Maryland, College Park, 20742

Zero

May 20, 1998

Introduction

The National Aeronautics and Space Administration (NASA) Data Assimilation Office

(DAO) at the Goddaxd Space Flight Center (GSFC) has developed the GEOS DAS, a

data assimilation system that provides production support for NASA missions and will

support NASA's Earth Observing System (EOS) in the coming years. The GEOS DAS

will be used to provide background fields of meteorological quantities to EOS satellite in-

strument teams for use in their data algorithms as well as providing assimilated data sets

for climate studies on decadal time scales. The DAO has been involved in prototyping

parallel implementations of the GEOS DAS for a number of years and is now embark-

ing on an effort to convert the production version from shared-memory parallelism to

distributed-memory parallelism using the portable Message-Passing Interface (MPI).

The GEOS DAS consists of two main components, an atmospheric General Circulation

Model (GCM) and a Physical-space Statistical Analysis System (PSAS). The GCM op-

erates on data that are stored on a regular grid while PSAS works with observational

data that are scattered irregularly throughout the atmosphere. As a result, the two

components have different data decompositions. The GCM is decomposed horizontally

as a checkerboard with all vertical levels of each box existing on the same processing

element(PE). The dynamical core of the GCM can also operate on a rotated grid, which

requires communication-intensive grid transformations during GCM integration. PSAS

groups observations on PEs in a more irregular and dynamic fashion.

157

I/O Requirements

A primary requirement of the shared-memory GEOS DAS is to provide real-time support

for EOS instrument teams after the EOS AM-1 satellite launch scheduled for late 1998.

The first delivery of the MPI-based GEOS DAS will have to meet requirements imposed

by this mission. One requirement of the I/O system is the generation of a suite of output

streams [1] without impacting the performance of the system. The data files must be in

HDF-EOS format to allow subsequent distribution to instrument teams and users. There

is also an internal requirement for the GEOS DAS to assimilate 30 days of data in one

calendar day as part of generating long-term reanalysis data sets. This is the requirement

that places the greatest performance demands on the I/O system. Given that one day

of assimilation must occur in 48 minutes, very little time can be spent waiting for I/O

processes. The expected input and output data volumes for AM-1 support and reanalysis

are specified in the following table.

Input Frequency Size/day Format Module

Boundary Conditions 24 hr 5 MB GRADS GCM

Restart initial 250 MB 64 bit GCM

Observations 6 hr 50 MB ODS PSAS

User Input initial 1 MB text Both

Output

History 3 or 6 hr 1200 MB HDF-EOS GCM

Obs with QC 6 hr 50 MB ODS PSAS

Restart 24 hr 250 MB 64 bit GCM

Diagnostic Info continuous 1 MB text Both

Table 1: This table shows the input and output streams for the GEOS DAS in support

of the EOS AM-1 launch. All data sizes are for one day of assimilation (not a calendar

day).

It is clear from Table 1 that I/O requirements of the system are dominated by the

GCM as roughly 70% of I/O is output from the GCM's "History" component. The

History component reads user-generated namelist files that defines some number of output

streams and a collection of model state and diagnostic variables for each stream. As the

GEOS DAS assimilation moves forward in time, these history streams are written to disk

at frequencies defined by the user. History has the potential to be a significant bottleneck

in both the shared-memory and distributed-memory systems. This is especially true

because the History module does more than just write data to a file. It must convert the

data from the internal computational space to a grid space and data format useful for

the user. This often requires grid transformations and other formatting which may be

computationally expensive. Our highest priority for the GEOS Parallel I/O Subsystem

(GPIOS) is to design a portable and efficient MPI implementation of the GCM History

module.

158

Example: m Dedicated I/0 PEs with n Compute PEs

• oo

MPI compute

write to disk
[slow]

file m-1

Once transfer from compute PEs to VO PEs is complete, compute
PEs are released to continue processing whlle I/0 PEs transform
and write to disk.

Figure 1: In the GPIOS parallel I/O concept, PEs are split into compute and I/O nodes. The

top group of PEs is dedicated to the primary computation, while the middle row depicts a pool

of I/O PEs. For output, each I/O PE writes to an independent file. While data input can be

performed in an analogous manner, the amount of input data are small in comparison to the

output data.

Parallel I/O Design

A conceptually simple way of writing output from a parallel application is to gather the

data into global fields on a single processor which subsequently writes the data to a file.

The I/O is serial and synchronous because all computation typically stalls until the I/O

process is complete. If an application needs to process and write large amounts of data,

this I/O time can significantly slow performance. For parallelizing the History module,

we have adopted the conceptual simplicity of the single-node output model and modified

it to allow performance gains. Rather than delegating I/O to a single PE that is also

tasked with computation, we use a group of PEs that are dedicated to I/O (Figure 1).

The compute PEs are delayed only long enough to gather the global fields on I/O PEs.

The data transformations and physical disk I/O occur asynchronously on the I/O PEs

while the compute PEs resume work on the GEOS DAS integration. The optimal number

of I/O PEs is a function of the number of output streams, the number of compute PEs,

and perhaps other factors such as the amount of memory on a single PE. This scheme is

portable to any machine with an MPI implementation.

159

Status &: Future Work

A prototype GCM written in Fortran 90 that uses MPI for communication is nearing

completion [3]. Key to building the GCM was the development of a set of base utilities

to support the data decomposition and to help isolate MPI calls from the application. [2]

In addition to routines that define and create the decomposition in a general way, there

are routines that facilitate the easy scattering of data from a global state to a distributed

state and vice versa. The gather utilities are used extensively by the parallel I/O system

and are the key infrastructure for its implementation.

We have developed the parallel History module and tested it in a unit test framework. We

have integrated it with the nearly complete MPI GCM prototype. The full system with

parallel I/O has been tested on SGI Origin, DEC Alpha, and Cray T3E. Initial results

are encouraging and show that large amounts of data can be written with little delay to

the GCM integration. Preliminary comparisons between the MPI GCM and the shared-

memory GCM indicate that History is much faster in the MPI version. Unfortunately,

realistic experiments are not yet possible as we await further development of the full MPI

GCM, however the following timings from a unit test show good I/O performance and

scaling as the number of streams is increased.

I/O PEs

Compute PEs

Data size MB)

Computation

Wait Time (s.)

Effective

I/O Rate (MB/s.)

4 4

56 112

2.2 3.5

25.5 32.0

Total I/O Time (s.) 231 240

4 4

168 224

5.2 6.5

32.3 34.4

242 240

Table 2: The timing and throughput results on the SGI Origin2000 are listed for different

numbers of I/O PEs and a fixed number of Compute PEs. The computational wait time

is the time required for the Compute PEs to transfer output data to the I/O PEs before

resuming the GCM integration. As the data size increases linearly with the number of

I/O PEs, the I/O rate and the overall I/O time remain nearly constant. The increase in

data size is accomplished by adding more streams, thus more I/O PEs for efficiency.

For the number of PEs we expect to use with the first version of the MPI GEOS DAS,

we think the dedicated I/O group concept presented here will provide adequate perfor-

mance. This concept may not scale to large numbers of compute PEs due to increasing

communication latency costs, although the use of asynchronous communication should

help hide latency. As portable parallel I/O interfaces such as MPI-IO become widely

available and supported by vendors, we plan to evolve GPIOS to make use of these tools.

Issues such as the overhead of grid transformations and the requirement to write data in

160

a modified HDF format (HDF-EOS) will haveto be addressedat that time. At this time
most work has beenfocusedon the GCM due to it's largeportion of the I/O load, but
attention must begiven to I/O optimization in PSAS. It is expectedthat dedicatedI/O
nodescanalsobe successfullyusedin PSAS.

References

[1] K. Ekers, J. Stobie, S. Schubert, D. Lamich, A. da Silva, L. Takacs, C. Pabon-

Ortiz, A. Molod, R Govindaraju, S. Nebuda File Specification for GEOS-3 Gridded

Output. NASA Data Assimilation Office, 1998

[2] W. Sawyer, L. Takacs, A. da Silva, P. Lyster. The Design of PILGRIM: A Parallel

Library for Grid Manipulations in Earth Science Calculations. NASA Data Assimi-

lation Office Note, 1998

[3] W. Sawyer, R. Lucchesi, P. M. Lyster, L. L. Takacs, J. Larson, A. Molod, S. Neb-

uda, C. Pabon-Ortiz Parallelization Aspects of an Atmospheric General Circulation

Model for Data Assimilation. Proceedings of High Performance Computing '98

161

162

Author: Chris H.Q. Ding

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory

Building 50F

Berkeley, CA 94720

cding@nersc.gov

Co-author(s): Peter M. Lyster

Jay W. Lawson

Jing Guo
Arlindo da Silva

Parallel Atmospheric Data Assimilation

Atmospheric data such as temperature, moisture, winds, etc., collected by satellites and ground observation stations

provide only partial information about the atmosphere. They are assimilated to numerical forecasts to provide a

coherent, evolving state of the global atmosphere. The data analysis system, the Physical-space Statistical Analysis

System (PSAS) developed at the Data Assimilation Office at NASA's Goddard Space Flight Center, requires

computing resources far beyond the capabilities of even the state-of-the-art vector supercomputers. We describe an

efficient and scalable implementation of the PSAS on distributed-memory massively parallel supercomputers such

as Intel Paragon and Cray T3E; the implementations achieves superb performance as demonstrated by detailed

performance analysis of systematic runs on up to 512 processors on Paragon, T3D and T3E. Consequently, the

solution time is reduced to 24.6 seconds on 512-PE T3E from 5 hours on a single head of Cray C90 for a real

problem of 80,000 observations, a 740-fold reduction of turn-around time. We will discuss the code structures and

the modular programming approach used to separate the original codes from those for parallelization.

163

164

Implementation of a Parallel Kalman

Filter for Stratospheric Chemical
Tracer Assimilation

L.-P. Chang*

General Sciences Corporation (a subsidiary of

Science Applications International Corporation).

P. M. Lyster $, R. M_nardt,S. E. Cohn

Data Assimilation Office,

NASA/Goddard Space Flight Center, Greenbelt, Maryland

Additional affiliations:

1: Department of Meteorology,

University of Maryland College Park

:_ Joint Center for Earth System Science.

t Joint Center for Earth System Technology,

University of Maryland Baltimore County

May 20, 1998

" E-mail: dao.gsfc.nasa.gov, phone: +1 301 805 6998, Mail: Data Assimilation Office,
Code 910.3, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

165

Abstract

A Ka]man filter for the assimilation of long-lived atmospheric chemical

constituents has been developed for two-dimensional transport models

on isentropic surfaces over the globe. An important attribute of the
Kalman filter is that it calculates error covariances of the constituent

fields using the tracer dynamics. Consequently, the current KMman-

filter assimilation is a five-dimensional problem (coordinates of two

points and time), and it can only be handled on computers with large

memory and high floating point speed. In this paper, an implemen-

tation of the Kalman filter for distributed-memory, message-passing

parallel computers is discussed. Two approaches were studied: an

operator decomposition and a covariance decomposition. The latter

was found to be more scalable than the former, and it possesses the

property that the dynamical model does not need to be parallelized,

which is of considerable practical aziwLntage. This code is currently

used to assimilate constituent data retrieved by limb sounders on the

Upper Atmosphere Research Satellite. Tests of the code examined

the variance transport and observability properties. Aspects of the

parallel implementation, some timing results, and a brief discussion of

the physical results will be presented.

166

1 Introduction

This paper extends an earlier paper by Lyster el al. (1997) on the implemen-

tation of a parallel Kalman filter used for atmospheric data assimilation at

the Data Assimilation Office (DAO) of the NASA's Goddard Space Flight

Center(GSFC). Even though the Kalman filter has been applied to meteoro-

logical problems for almost a decade, its full implementation in the context

of 4-dimensional data assimilation is not yet possible on today's computers.

In order to develop a Kalman filter that has certain practical use, we focus

our model problem on the assimilation of relatively long-lived trace chemi-

cal constituents in the middle atmosphere. This problem is also of interest

to the earth science community. If we choose the potential temperature as

the vertical coordinate, then the assumption of two-dimensionality becomes

a good approximation in describing the transport dynamics. Thus, we have

implemented a Kalman filter in spherical geometry on an isentropic sur-

face in the stratosphere with either a medium (4 ° lat x 5 °lon) or a high

(2 ° lat x 2.5 ° lon) resolution. Real-data observations for the Kalman fil-

ter assimilation currently come from the NASA Upper Atmosphere Research

Satellite (UARS) limb-sounding instruments that obtain retrievals of trace

gases in the stratosphere. Analyzed winds from the global atmospheric data

analysis system of the NASA/GSFC/DAO are used to drive the transport

model of the Kalman filter to assimilate real data.

In the following sections, we briefly discuss the Kalman filter equations, the

implementation strategies of the filter for parallel computers, timing infor-

mation of the filter on two different distributed-memory computers, some

numerical tests and experiments, and conclusions of our work.

2 Kalman Filter for constituent assimilation

If we neglect the diabatic effects, chemistry, vertical mixing and explicit

subgrid-scale parameterization of mass flux, we may then express the trans-

167

port of the long-lived trace constituentson an isentropicsurfaceas

0w
0--t- + V0.V0w = 0.

Here w represents the mixing ratio of the constituent, and V0 is the 2-D

wind vector on the isentropic surface. In matrix-vector notation, a discrete

version of this equation can be written as

w_, = Mk-, w__l,

where w_ is an n-vector of constituent mixing ratio on a grid covering the

isentropic surface, and the n x n matrix Mk-1 denotes the action of the

discrete dynamics from time tk-1 to time tk.

A discussion of the Kalman filter in full scope can be found, for example, in

the thesis by Cohn (1982). The Kalman filter algorithm essentially consists

of two steps in matrix-vector notation:

• forecast step:

Wk/ = Mk-lW__l,

Pk/ = Mk-1 P_-I ML1 + Qk,

: Mk-1 (Mk-1 P__I) T + Qk,

• analysis step:

w_ = w_ + Kk(w_- Hkw_),

.f TKk = PkHk (HkP_H T + Rk) -I

P_ = (I- KkHk)Pk/(I- KkHk) T + KkRkK/.

The last equation is referred to as the Joseph form of the error covariance

equation. When the optimal Kalman gain K is used, it simplifies to the

following optimal form

P_ = (I- KkHk)P_.

168

In these equations,we have used the following notations: M denotesthe
transport model matrix; w denotesthe state vector; P denotesthe error
covariancematrix; Q denotesthe modelerror covariancematrix; K denotes

the (Kalman) gain matrix; R denotesthe observationerror matrix; H de-
notes the interpolation matrix; The subscript 'k' denotesthe k-th time step;
The superscript 'f' denotesthe 'forecast' step; The superscript 'a' denotes
the 'analysis' step; The superscript 'o' denotesthe 'observed'quantity; The
superscript 'T' denotesthe 'transpose' of a matrix.

3. Implementation strategies for distributed-memory parallel computers

The style of programming adopted in coding the Kalman filter is to have

the same compiled program run on many processors with each processor

responsible for different parts of the distributed memory. This is referred to

as Single Program with Multiple Data (SPMD). Earlier code development

was done partially on the Touchstone Delta and mainly on the Intel Paragon

computers at the California Institute of Technology (CaITech) with the Intel

NX communications library used for message passing. About a year ago, we

have implemented the MPI library and have since made runs on the Cray

T3E at NASA/GSFC.

In what follows, we briefly describe the implementation strategies for the

forecast step and the analysis step, respectively:

(a)forecast step:

The state vector w[is evaluated first. The linear discrete dynamics Wk

depends on the wind field but not on w[. We then evaluate the covariance

matrix Pk/. The covariance computation involved in the Kalman filter is

floating-point count- and memory-intensive, so it is important to distribute

effectively the large (n x n) matrix P. We have considered two implementa-

tion strategies, the operator- and the covariance-decompositions:

i) operator decomposition

The operation MP can be represented as [MP1, MP_,. •., MPI,..., MPn],

169

wherePi is the ith column of matrix P. Each Pi is state-vector-like with

the same structure as w. The operator decomposition is based on a decom-

position of the domain of the transport model M. For the forecast of w

or a column of P, this is a classical domain decomposition algorithm. The

schematic for operator decomposition for storing large (n x n) matrices and

performing M(MP) w is shown in Fig. la.

ii) covariance decomposition

In this case, the covariance matrix P is partitioned along rows so that whole

columns are stored contiguously on each processor. The transport model

operator such that M operates on whole columns of P. On a message-

passing computer with number of processors Np >> 1, load balancing must

be attained for efficiency. The schematic for covariance decomposition for

storing large n × n matrices and performing M(MP) T s shown in Fig. lb.

iii) comparison of the two decompositions

Comparison of the measured speedup curves using the Touchstone Delta and

the Intel Paragon for the two approaches discussed above are shown in Figs.

2a and 2b. Examination of them shows that the latter scales much better

than the former. It is well known that parallelization of different transport

models is, by and large, no easy task, especially for the semi-Lagrangian ones.

The covariance decomposition approach makes it unnecessary to parallelize

the transport model, and this enables the choice of transport scheme on the

basis of scientific merit alone. This is the reason why we favor the covariance

decomposition as the default approach of the Kalman filter program.

(b)analysis step:

The gain matrix K is evaluated first in the analysis step. For bilinear inter-

polation, the (p x n) matrix H has only four non-zero elements in each row,

so it is treated as an operator in the code. Since PI is distributed, and K

is reproduced identically on all processors, partial sums of P/H t on individ-

ual processors are first obtained then globally summed over all processors to

170

= _m_ domain decompositionP
of P down Columns

in-processor
transpose

M(MP)T= M _ = _ffi_

(P is symmetric)

domain decomposition
of P along rows

global transpose

Figure 1: (a)Schematic for the operator decomposition approach;

(b)Schematic for the covariance decomposition approach for storing large
size-n 2 matrices and performing M(MP) T.

171

'!

/

/

lO 15 2o

(g)

/

t

.•/"

..:::.::..-" T.,.,

_,Qer ef _ 1_1

Figure 2: (a)Speedup curves for the domain decomposed van Leer transport

algorithm implemented on the Touchstone Delta; (b)The actual speedup

curves for the forecast step, the analysis step and the the full Kalman filter on

the Intel Paragon for the medium resolution using covariance decomposition

and the optimal form analysis equation.

get the net result. The matrix HP/H T is evaluated as H(HP/HT), with

the matrix pIHT already existing on all processors. After HPIH T + R is

obtained, its inverse is evaluated by an eigenvalue decomposition solver of a

symmetric matrix. There is a memory burden in storing K and pIHT on all

processors, which becomes comparable to the storage of P when p ,_ n/Np.

After the evaluation of the gain matrix K, we evaluate the covariance matrix

P_. For the optimal form, P_ is evaluated as P! -K(HP/). The second term

uses K and (pIHT)T, both of which are identically stored on all processors.

For the Joseph form, P_ is evaluated as (I - Kk Hk) [PI - K(HPI)] T +

KRK w . which is generated from HP I, K and R all stored identically on all

processors.

To finish up the analysis step, we evaluate the state vector wT,. This is a

relatively smaller calculation, and is carried out identically on all processors.

172

The innovation vector w° - ttw/is evaluatedand savedalong with w_, for
collection of innovation statistics.

4 Timings for the parallel Kalman filter

(a)with the Intel Paragon

We first examine the timing information for the Kalman filter using the Intel

Paragon at CalTech. The speedup curves corresponding to the forecast step,

the analysis step and the full filter for medium resolution have already been

shown in Fig. 2b. Curves here using the Intel Paragon are obtained by

directly connecting points corresponding to numbers of processors 8, 16, 32,

64, 128, 256 and 512. We chose these numbers partially because we had to

comply with the queue arrangement at the time those runs were made. The

actual times in seconds per time step for the analysis using the Joseph form,

the forecast step and the full filter are shown in Fig. 3a for the medium

resolution and p=14 observations per time step. The dominant cost of the

analysis for large numbers of processors is clear. A typical 10-day assimilation

run takes 960 time steps, which evaluates to 45 rain. of wall clock time for the

full filter with 256 processors. The corresponding result of the actual times

in seconds per time step for the optimal form is shown is Fig. 3b. Since the

optimal form is simpler arithmetically, the actual times for the analysis are

relatively small. Only for large number of processors Np > 256 does the time

for the analysis step exceed that of the forecast step. A 10-day run for the

optimal form takes about 34 rain. of wall clock time of the full filter using

256 nodes due to the simpler calculation in the analysis step.

Due to the limitations of main memory, high-resolution runs can only be

performed on 256 and 512 processors of the Intel Paragon. For a 10-day run

with 960 time steps on 256 processors, the total time for the full optimal

Kalman filter at high resolution is 7.6H. And it takes 5H using 512 nodes.

The ratio of the total time for 256 to that for 512 processors is 1.52 which is

considerably better than that for the medium resolution, 1.35.

173

10,0

1.0

i

100.0

c_

10.0

1.0

(o) us;ng tBe Joseph form

100 200 300 400 SO0 _00

_mbm cd _ Np

(b) usin 9 the opt;real form

100 2OO 3OO 4w_ _ (&0_

N_IMr o# PnICIII_nl Np

Figure 3: The actual time (s) per time step of the forecast step, the analysis

step and the full Kalman filter on the Intel Paragon for medium resolution

using covariance decomposition.

(b)with the Cray T3E

We will now show the timing information for the full filter using the Cray

T3E at NASA/GSFC. Comparison of the medium-resolution speedup curves

for the full filter for the Paragon and for the T3E is shown in Fig. 4a. In

the Cray T3E case, the solid curve represents the connection of points for

numbers of processors 10, 12, 16, 32, 46, 92, ..., 414, 460, 512 somewhat

similar to the curve for the Paragon. Notice that multiples of the meridional

dimension of the state vector, 46, were used in making runs. It is clear that

the T3E is a faster computer than the Paragon by a factor of about 3. What is

also shown in dashes is the actual step-function-like behavior of the Kalman

filter performance as a result of the way the covariance decomposition is

domain-decomposed in the code when the number of processors is greater

than the meridional dimension of the state vector. Except for those numbers

of processors mentioned above, additional numbers such as 91, 137, 183, ...,

459 were included in plotting the dashed curve. It is seen that use of number

of processors from 47 up to 91 produces a nearly constant time per time step.

174

This implies two things: (1)the additional processorsbetween47 and 91 are
not contributing to the speedupof the forecaststep becausefast processors
have to wait for the slow onesto finish their work; (2)the speedupof the
analysisstep is not large enoughto really improve the speedupof the total
step. Useof 91 (=2"46-1) processorsis the leasteconomicalchoice.

For the high-resolution runs, the meridional dimension of the state vector is

91. The T3E has enough memory space to allow for runs with number of

processors greater than or equal to 182. In analogy to Fig. 4a, we show the

comparison of the full filter using, respectively, the Paragon and the T3E for

the high-resolution grid in Fig. 4b. It is clear that the scalability for this

resolution is markedly better than that for the medium resolution. It can

also be inferred that the forecast step outweighs the analysis step roughly for

all the numbers of processors used up to 512.

100.0

!
lO.O

o,1

2"

.j

Medium resolution (4" lot x 5" Ion)

100 200 300 400 NpSO0Numl_" of Pmculc.m

(o)

H;gh resolution (2* lot x 2.5" Ion)

11:(I 200 300 400 500 Io0

Numb*_ d I_ocese_l Np
(b}

Figure 4: Comparison of the optimal-form timings of the full filter using,

respectively, the Intel Paragon and the Cray T3E; Solid curves denote the

envelopes, and the dashed curve illustrates the true behavior using the T3E.

175

5 Numerical tests and experiments

Results of two numerical tests using solid-body-rotation winds and two nu-

merical experiments assimilating the mixing ratio of methane (CH4) on the

1100K isentropic surface from two UARS limb sounders, the Cryogenic

Limb Array Etalon Spectrometer (CLAES) and the Halogen Occultation

Experiment (HALOE), will be briefly described below.

(a) test for consistent evolution of the error variance

For nondivergent flows with no observations, the variance is only being ad-

vected by winds. Use solid-body rotation with flow over the poles as the

winds, we may test the implementation of the discrete covariance propaga-

tion. The variance field at time zero and that after a full rotation are shown

in Fig. 5. Except for a slight north-south asymmetry, the overall shape is

well preserved indicating a sound variance propagation near the poles. This

test indicates that our covariance transport is correctly coded.

(b) observability test

This test involves both forecast and analysis steps using synthetic perfect

observations to test reduction to zero of the total variance in finite time if the

observability condition is met. Zonal solid-body rotation winds are used, and

observations are made at all grid points along a fixed meridian at each time

step such that the entire flow is observed perfectly in one rotation. Because

the observation error variance matrix R is taken to be zero, the Joseph form

of the analysis step is used to help ensure numerical stability in this extreme

case. The initial error covariance is obtained from the SOAR covariance

function with values of correlation length L=(1000, 500, 5km). The total

variance versus time is plotted for each L value in Fig. 6. For L=1000 and

500km, where the correlation length is comparable to the grid spacing near

the equator and greatly exceeds the grid spacing near the poles, the variance

decreases rapidly at first, then decreases almost linearly, and finally reaches

zero in one day. For L=5km, the correlation length is well below the grid

spacing, corresponding to an almost diagonal initial covariance structure. In

176

...::".."..'" ..'" ._" .." i _ "_ ". _'. ".. "'., "'..':-':,.

f._'t'-'z'._o_: °':. _:.•._'-"_-_•:••••'_, ••• _v• :'.: :*-.:_°_;_,,,

Figure 5: (a)The initial variance; (b)the final variance after a full rotation of

the winds for solid-body wind propagation over the poles.

177

this case,the total varianceisexpectedto decreasealmost linearly with time,
which is exactly what our test result shows.

_ . Obx,,._biLityt_t

]

o

r_ (_,_)

Figure 6: The total variance vs. time for a meridional observing network and
an observation error covariance matrix R=0. The initial error covariance

matrix is obtained from SOAR covariance function with values of correlation

length L= 1000, 500 and 5km. The rotation period of the solid-body winds

about the polar axis is one day.

(c) UARS CLAES and HALOE experiments

A 4-day pure advection and two 4-day assimilations, respectively using the

UARS CLAES (dense) and HALOE (sparse) observations, of the ll00K

methane mixing ratio field have been conducted. Results for day-4 pure-

transport and the CLAES assimilation are shown in Fig. 7. A wave break-

ing near the southern tip of Africa can be seen. The CLAES assimilation

depicts the wave breaking pattern in finer detail when compared to the pure-

transport result. The HALOE assimilation result shows a wave breaking

pattern which resembles the CLAES result very much, even though only a

few observations are available and are located in the tropics. This suggests

that the covariance field in the Kalman filter helps to influence the wave

breaking pattern in mid- latitudes in this case.

178

_m

KJ: CUdES amdmaeCkm

_ .co o iio 13o

ClWI_,S 11QQK CI"14 tt_ttlR llllk_ III lltltlv

0 .2 .4 .S ,I I. 1._ 1.4 1.6 IJ :*lJ_

Figure 7: ll00K mixing ratio field for the pure transport and the Kalman

filter assimilation of UARS CLAES observations on day 4.

The three-dimensional field of methane mixing ratio can be generated by a

layering of results from a two-dimensional Kalman filter. Fig. 8 shows a

sample 3-D plot.

6 Conclusions

Here we briefly summarize what we have accomplished in regard of imple-

menting the parallel Kalman filter at DAO:

We have implemented on distributed-memory parallel computers a Kalman

filter for the assimilation of atmospheric constituents on isentropic surfaces

over the globe. The code has been parallelized using the Message Passing

Interface (MPI), so it can run on any parallel computers that support this

interface. We have thus far run this code on the Touchstone Delta, the Intel

Paragon and the Cray T3D and T3E, all with success. Lately, many Fortran

90 features such as 'allocatable arrays', 'pointers to arrays' and 'modules'

have been implemented in the most current version of the code.

We have developed a covariance decomposition approach as the basis of the

179

Figure 8: A sample plot of the three-dimensional field of methane mixing

ratio generated by layering of results from a two-dimensional Kalman filter.

parallel algorithm in which we distribute the columns of the forecat-analysis

error covariance matrix on different processors. This approach is not only

efficient in terms of parallelization, it also has the important advantage that it

is not necessary to parallelize the model transport code, only that it fits onto

the memory of each processor, which is usually the case. The less scalable

operator decomposition approach was abandoned because it also required

parallelization of the transport model.

With regard to the wall clock speed, a 10-day run using UARS CLAES

observations can be completed in 34 minutes for the optimal form of the

analysis at medium resolution on 256 processors of the Intel Paragon with

04 and noieee compiler optimizations. The same run takes 13.6 minutes

on the Cray T3E at NASA/GSFC, with some minor extra computation to

improve the quality of the code. The T3E is about 2.5 times as fast as

the Paragon at this resolution. For high resolution, a 10-day run using the

180

optimal form takes 5H on 512 processors of the Paragon and approximately

1.5H on the T3E. Note that at high resolution, the T3E is about 3.3 times

as fast as the Paragon, which implies that our Kalman filter problem runs

more efficiently on the T3E at high resolution. Another advantage in using

the T3E is that its higher precision may help prevent potential numerical

difficulties in the computation.

For medium resolution, the Kalman filter forecast step shows some reduc-

tion in scaling when the full 512 processors of the machines are used. This

is primarily due to communication overhead involved in the global matrix

transpose. The reduction in scaling for the analysis step is more severe due

primarily to the serial (unparallelized) calculation of the Kalman gain matrix

on each processor. This reduction is due, probably more significantly, to soft-

ware simplifications that involve the use of global sum library subroutines.

In contrast, for high resolution, the scaling seems to be reasonably good for

up to 512 nodes.

181

182

A Comparison of several Scalable Programming Models
Alan J. Wallcraft

Naval Research Laboratory, Code 7323, Stennis Space Center, MS 39529.

wallcraf@ajax.nrlssc.navy.mil, +1 228 688-4813, Fax: +1 228 688-4759

Abstract

The NRL Layered Ocean Model (NLOM) iswritteninthetileddata parallel

programming style, and uses an application specific programming interface to

isolate operations that require communication. This allows different scalable

programming models to be "plugged" into NLOM with relatively little effort.

NLOM is similar to other OGCM's, except that it uses a direct Helmholtz's

equation solver as part of its semi-implicit time scheme and typically runs

with a very large horizontal extent and very few layers in the vertical. There

are now several Fortran-based SPMD programming models to choose from on

machines with a hardware global memory: a) MPI-1 message passing, b) MPI-2

put/get, c) BSP, d) SHMEM, e) F--, f) OpenMP, and g) HPF. These models are

compared and contrasted based on actual experience with NLOM and related
kernel benchmarks.

Introduction

The NRL Layered Ocean Model, NLOM, has been under continuous development

for 20 years [1], [2], [3]. It has been used to model semi-enclosed seas, major ocean

basins, and the global ocean. NLOM has been optimized for the problem space of

Navy interest, simulation now-casting and prediction of fronts and eddies, and for

such problems it is is 10-100 times more efficient (in operations performed per result)

than competing OGCM's.

The current implementation of the model uses the tiled data parallel programming

style. Consider the following simple serial code fragment:

REAL A(IH+I, JH), DA (IH+I, JH)

DO J= i,JH; DO I= I,IH

DA(I,J) = DX*(A(I+I,J) - A(I,J))

ENDDO ; ENDD0

The arrays A and DA have been extended by a one column "halo" to allow a clean

implementation of a periodic boundary. On entry A(IH+I, :) must be identicalto

A(I, :). The equivalenttileddata parallelversionadds a halo on allsides and splits

the array into sub-domain tiles:

REAL A(0:IHP+I,O:JHP+I,MP,NP) ,DA(0:IHP+I,0:JfIP+I,MP,NP)

!HPF$ DISTRIBUTE A(*,,,BLOCK,BLOCK),DA(*,*,BLOCK,BLOCK)

DO N= I,NP; DO M= I,MP

DO J= I,JHP; DO I= l,lflP

DA(I,J,M,N) = DX,(A(I+I,J,M,N)

ENDDO; ENDDO;

ENDD0; ENDD0;

- A(I,J,M,N))

183

If MP and NP are both 1, this is Single Program Multiple Data (SPMD) domain

decomposition. A 2-D, MPE by NPE, grid of processors are all running this identical

program, with IHP=IH/MPE and JHP=JH/NPE. Provided the halo is up to date, the

code fragment calculates the required values over the subdomain owned by the local

processor. Alternatively, if MPxNP represents the number of processors, this is data

parallel High Performance Fortran (HPF) [4] and the compiler does not need to

generate any off-chip communication. It is also then appropriate for autotasking of

the N loop using Fortran 77 compilers on SMP systems.

By using cpp macros, NLOM can select between scalable programming models at

compile time while maintaining a single source code. An application specific pro-

graming interface (API) is used to isolate operations that require communication

(halo updates etcetera). The API must be implemented for each new programming

model, but the rest of the code is largely independent of the model used. For more

information on scalable NLOM see Wallcraft and Moore [5], [6].

In the area of scalability, NLOM performs similarly to other OGCM's, except that

it uses a direct 2-D Helmholtz's equation solver as part of its semi-implicit time

scheme and typicaly runs with a very large horizontal extent and very few layers in

the vertical. For example, a six layer 1/32 degree Pacific model is typical of "large"

problems today and it has a 4096 by 2688 by 6 grid. Since it has so few layers

in the vertical, NLOM uses 2-D domain decomposition (with the vertical dimension

"on-chip") and performs all operations on 2-D slabs. OGCM's with more degree's

of freedom in the vertical might still choose 2-D domain decomposition, but would

typically perform communications on an entire 3-D field rather than on individual 2-

D slabs. The direct 2-D Helmholtz's equation solver requires transposing from a 2-D

to a 1-D domain decomposition, and therefore potentially reduce overall scalability.

In general, scalability of NLOM is excellent on current scalable systems (using 64-256

nodes per job) because the 2-D arrays are so large.

SPMD programming models

There are now several Fortran-based SPMD programming models to choose from on

machines with a hardware global memory.

MPI-1

Message passing is the most general scheme but it requires the source and target

processor to cooperate in the transfer. MPI-1 is the message passing library of choise

for SPMD codes, and is available on all platforms [7]. NLOM can use MPI and

has cpp macros to hide word length differences and to select between several possible

optimizations at compile time: (a) I_I_SENDI_CV in place of the default non-blocking

point to point calls, (b) SSEI_ in place of the default SEND, (c) replacements for

ALLGATHER, ALLREDUCE(MAX) and ALLREDUCE(MIN) that use a binary tree on one

dimension and a ring exchange on the other dimension, and (d) serializedarray I/O.

184

SHMEM

SHMEM is Cray's one-sided put/get direct memory access library [8]. It is only suit-

able for machines with a hardware global shared memory. SHMEM is available on

all Cray and SGI systems (Cray PVP, Cray T3E, SGI Origin 2000), but not on com-

peting SMP or DSM systems from other vendors (e.g. Sun El0000 and HP/Convex

SPP-2000). Unlike the other libraries described here, all SHMEM calls are (locally)

blocking. Thus the standard Fortran assumption that there is a single thread of con-

trol and that any changes to memory or disk (buffers) caused by a subroutine call will

happen before it returns is valid for SHMEM, but not necessarily for non-blocking

calls in other libraries. The MPI-2 standard [9] has a good discussion of these issues,

which can cause optimization problems in Fortran 77 but are much more serious for

Fortran 90. SHMEM put updates memory on another processor, but this is not a

problem if either (a) put is never used, or (b) the appropriate syncronization calls

are included. The typical SHMEM program relies on a fast global barrier, and uses

COMMON to hold arrays and/or buffers that are accessed from other processors. NLOM

can use SHMEM and has cpp macros to hide word length differences and optionally

to use local syncronization in place of some global barrier calls.

BSPlib

Bulk Synchronous Parallel delays put/get operations to the end of a "super-step",

which allows implementation on machines without a global memory. Note that this

implies that the put/get operations are non-blocking. There is a portable implemen-

tation, BSPlib, that runs on many machine types [10]. However, BSPlib effectively

requires several global barriers at the end of each superstep because it imposes a

particular order on puts and gets. There is formally no need for both put's and get's,

and NLOM's SHMEM version (for example) never uses put, but there is no way to

tell BSPlib to skip put processing. BSPlib has been designed to be called from C, e.g.

sizes in bytes and byte offsets. There is a Fortran interface but it is a direct mapping

of the C version, and is therefore very obscure to Fortran programmers. However, the

library is small enough that it would be relatively easy to build your own (improved)

Fortran interface. Unlike SHMEM, BSPlib only allows access to remote memory

via pre-registered "windows". This potentially provides a safer interface, and allows

non-static arrays to be accessed remotely, but at the cost of more complicated (and

slower) code. BSPlib provides an alternative blocking get (on global shared memory

machines only) that acts like a SHMEM get, and it is often possible to define a single

memory window that includes all named COMMONareas. So BSPlib can be made to

look almost exactly like SHMEM. However, BSPlib barrier performance prevents it

being a viable (portable) alternative to SHMEM.

MPI-2

MPI-2 put/get is patterned on BSP, but with hooks that allow optimization for global

memory machines (including non-global syncronization) [9]. If well implemented, this

185

will provide a portable alternative to SHMEM. MPI-2 includesall of MPI-1, and it

also includes a very powerfull parallel I/O interface. Thus parts of MPI-2 are usefull

even for message passing codes. It is also possible to use MPI-1 message passing for

some things and MPI-2 put/get for others. However, there are currently very few

MPI-2 implementations (none from US vendors). Like BSPlib, MPI-2 uses memory

windows and non-blocking puts and gets. However, MPI-2's Fortran interface is much

superior to that in BSPlib. As is typical of MPI, the MPI-2 one-sided interface is very

rich. It is as easy to write a Bulk Synchronous Parallel program with MPI-2 as with

BSPlib, but this involves using a very particular small subset of MPI-2's one-sided

capabilities. It does not seem easy to "emulate" SHMEM using MPI-2, and such an

emulation would certainly not be portable to all machines that might benefit from

put/get. Fortunately, translating a SHMEM program to use (portable) MPI-2 should

be straight forward. However, the performance of MPI-2 global barriers will be critical

if it is to replace SHMEM. Some of the non-global syncronization options in MPI-2

may improve performance over global barriers, but fast global barriers are going to

be essential if MPI-2 is going to gain wide acceptance by SHMEM programmers.

F-- is a simple extension to Fortran that allows SHMEM-like put/get to be expressed

via assign statements [11]. At a minimum this is a much clearer way to express

put/get than a subroutine call. There are more concrete advantages, including lower

latency (no subroutine call overhead) and the possibility of applying all the usual

compiler optimizations to remote memory accesses. As a language F-- is currently

incomplete because it cannot conform to Fortran I/O semantics but does not provide

an alternative. There are experimental versions of F-- for the SGI Origin 2000 and

the Cray T3E, but no compilers from other vendors. A major potential advantage of

F-- over SHMEM (or MPI-2) is compiler optimization of fine grain code fragments

involving remote memory accesses. However, this has yet to be demonstrated in

practice. One problem area for optimization is that the compiler must assume that

any variable marked for remote access could in fact be remotely accessed at any time

during execution of that subroutine (variables only need be marked in subroutines that

perform remote access). This has the effect of drastically reducing the optimization

possibilites for such variables, so F-- could end up being slower than the equivalent

SHMEM (or OpenMP) code. This could have been avoided by providing a more

relaxed memory model as part of the F-- definition.

OpenMP

OpenMP is a set of compiler directives that provide a high level interface to threads

in Fortran, with both thread-local and global memory [12]. OpenMP can also be

used for loop-level directive based parallelization, but in SPMD-mode N threads are

spawned as soon as the program starts and exist for the duration of the run. The

threads act like processes (e.g. in MPI), except that some memory is shared and

there is a single I/O name space. There are alternatives, but the closest mapping

186

to process-basedSPMD programsis for almost all memory to be thread-local (i.e.
one independentcopy per thread) with global memory (visible to all threads) being
usedonly as "buffers" for communication. A global buffer would typically hold N
"local" buffers (one per thread). It is possibleto use threads directly to create a
threaded SPMD Fortran program, and portability is achievablevia the Posix thread
standard [13]. However,Posix threads are very low level and are difficult to use
from Fortran. OpenMP providesa higher level, Fortran friendly, portable interface
to threads. A threadedprogramhasa single I/O space,and simultaneouscalls from
multiple threads may be unsafe. OpenMP hasa more relaxedmemorymodel than
F--, that should not hinder optimization of sharedvariables.

HPF

High Performance Fortran provides a single-thread global memory user interface by

doing communication and work distribution in the compiler, but it requires directives

to distribute arrays across each processor's "local" memory [4].

Programming Issues

Portability

A language or library is "portable" if there are well understood guidelines for how

to use (a subset of) the language or library so as to obtain good efficiency on a wide

range machines (for a significant class of problems). SHMEM, F-- and OpenMP

are unlikely to perform well on machines without a hardware global shared memory.

BSPlib and MPI-2 put/get can take advantage of a hardware global shared memory,

but can in principle also work on "shared nothing" systems, such as the IBM SP.

How well MPI-2 will in fact work on such systems is unknown at present. A very low

latency interconnect (and perhaps hardware support for barriers) might be all that

is required to make MPI-2 put/get viable. Both HPF and MPI-1 can in principle be

implemented efficiently on any scalable system.

MPI-1 is now available for all scalable systems, often via a vendor supported library.

It is typically now possible to write a "portable" implementation of a given algorithm

in MPI by following a few simple guidelines (defer syncronization, ISEND before

IRECV, persistent communication requests, stride-1 buffers, don't use most collective

operations). In addition, the syntax of MPI is regular enough that it is easy to

provide several alternatives (selected at compile or run time). However, collective

operations are often implemented very poorly. Thus a version using explicit point

to point communications is almost always required for efficiency on some machines,

with perhaps a MPI collective alternative for those few vendors who have optimized

versions. Note that running many MPI collective operations twice on the same data

is not guarenteed to produce the same result. This rules out such operations for many

portable programs.

MPI-2 will probably become almost as widely available as MPI-1. It is not at all clear

187

today what will be required to write portable put/get codeusing MPI-2. The key
unansweredquestion is how easywill machines,such asthe HP/Convex SPP-2000,
with two kinds of memory (local and global) be to program using MPI-2 put/get.
A secondaryportability concern is how efficiently vendors implement the various
syncronizationoptions. Sincethe efficiencyof MPI-2 put/get may be low on at least
some"shared nothing" systems,programsthat must run on such machineswould
haveto at least providea MPI-1 messagepassingalternative to eachput/get. This
reducesthe easeof useadvantagefor put/get over messagepassing. It is relatively
easyto addMPI-2 put/get asanoption to anexistingMPI-1 messagepassingprogram
(selectivelyreplacingonly thoseoperationsthat are faster usingput/get).
BSPlib is available as sourcecode for many machine types and there is an effort
underwayto get vendor'sto produceoptimizedversions.However,giventhat BSPlib
is quite slow on machineswith a global sharedmemoryand MPI-2 can be used to
write BSP programs,theredoesnot seemto bemuchfuture for BSPlib asa portability
tool.
HPF is widely available,but the languagestandardwasnot designedfor portability.
For example, there areno portabledefault array distributions soa portable program
must include compiler directives in every subroutine defining the layout of every
array usedby that subroutine. It is also still the casethat alternative distributions
can produce hugedifferencesin performanceand (more importantly) that different
distributions perform well with different compilers. Oneapproachto HPF portability
is to use the Portland Group HPF compiler, which is availableon many platforms
(i.e. usea portable compiler, rather than a portable sourcecode).
SHMEM is a very small library providing very fast put/get. However,no vendor
other than SGI/Cray haschosento providean implementation. A portable program
that usesSHMEM today must provide an alternative (typically MPI-1) for non-SGI
machines.For thoselooking to migrate SHMEM programsto anAPI that is portable
acrosssharedmemorymachines,the viableoptions seemto be MPI-2 and OpenMP.
MPI-2 providesput/get but with significantdifferencesto SHMEM and with unknown
performance.OpenMP is availabletoday with performancecomparableto SHMEM,
but migrating from SHMEM to OpenMP may require changesto subroutines that
don't currently call SHMEM. The issueof I/O is particularly problematic.
There are experimentalversionsof F-- for the SGI Origin 2000and the Cray T3E,
but no compilersfrom othervendors.If othercompilersexisted,the major portability
issuewould beperformancewhich at leastinitially might be relatively low becauseof
the memorymodel requiredfor global variables.How to implementF-- on machines
with both local and global memorywould alsobe an issue.F-- has the best syntax
of all the alternatives for SPMD Fortran on global sharedmemory machines,but
without a portable (sourceto source)compileror support from severalmajor vendors
it is not a viable portability tool.
OpenMP is availablein beta today from SGI on the Origin 2000,and from KAI as a
sourceto sourcecompileron severalmachinetypes. It haswide support and should
soonbe availableonall machineswith a globalsharedmemory,from PC's to MPP's.
The standard is not rigerousenoughto be confident about portability betweenthe

188

many compilers that will exist. For example, it does not define the memory type
(SHARED vs LOCAL) of variableswith the SAVE atribute inside a subroutine. A
program will definately break if a compiler allocatesone kind of memory and the
program assumesthe other, so the only portable solution at presentis to neveruse
a SAVE statement in an OpenMP program (except for named COMMON). Once
severalimplementationsof OpenMP are available,it is likely that a portable subset
of the languagewil emerge.The only portable performanceissueseemsto bewhere
global variablesare placed in memory. OpenMP providesno mechanismto control
this, and vendors are free to add their own (incompatable)extensionsto OpenMP
for laying out sucharrays in memory. Somemachinesdon't care about layout (e.g.
Sun El0000) and somehave run time layout mechanisms(e.g. SGI Origin 2000),

but the performance on others may depend critically on shared array layout. Note

that thread-local and shared variables map naturally to local and global memory

respectively on machines with two kinds of memory. The only issue is where in global

memory shared arrays are located.

Ease of Use

How easy each of the programming models is to use is obviously highly subjective.

Message passing is certainly more difficult than put or get in that both sides of each

memory transaction must cooperate in the exchange. This is more of an issue in cases

with irregular communication patterns. The regular patterns typically associated

with finite difference OCGM's are not usually difficult to express via message passing.

The difficult part of put/get programming is syncronization, which is similar in all

put/get models, but F-- is probably the easiest of all the process-based pure SPMD

programming models to use.

A strong ease of use argument can be made for the global view of arrays provided

by HPF. However, this is somewaht counter balanced by the difficulty of laying out

arrays in memory. The extra boiler-plate code (compiler directives) needed for HPF

programs is non-trivial. Many programmers seem to have "voted" for the less easy

to use MPI-1, perhaps because HPF is easy to understand but does not necessarily

provide a simple migration path from the existing code base. The performance of

HPF relative to MPI-1 is also an issue.

OpenMP provides a programming model intermediate between F-- and HPF. It can

use thread-local independent arrays, like F-- local arrays, or shared arrays, like HPF

arrays, and can emulate F-- globally accessable local arrays using shared arrays with

an extra dimension for the thread count. The primary difficulty with OpenMP is that

SPMD threads that exist for the entire program are relatively new to Fortran pro-

grammers, and require some changes over process-based SPMD programming prac-

tices (particularly for I/O). Like all compiler directive based API's, the number of

directives required can get out of hand (although it requires many fewer than HPF).

OpenMP can be significantly easier to use than even F-- for irregular communica-

tions. For example a generic transpose operation in OpenMP might copy from one

set of thread-local arrays (the input layout) into a shared array that uses the "nat-

189

ural" dimensioning and then copy out into a secondset of thread-local arrays (the
output layout). Both copyoperations are trivial to program, and this works for any
local distributions of the array. The real issuefor OpenMP is not easeof use, but
performance. In the transposeexample,wehavecertainly doneoneextra copyof the
entire array but this doesnot necessarilymeanthat this method is twice as slow as
a direct copy from onelayout to the other. In general,the fact that the programmer
has no control over the layout of sharedarrays in global memorymight slow down
somecodes. However,threads are generallya big win overprocesses- particularly
whenmapping multiple threadsor processesonto fewerprocessors.

I/O

Fortran has a specific model of I/O that is intrinsically single-thread, and which

is violated by parallel I/O to a single file in all programming models except HPF.

HPF can do parallel I/O that conforms to standard Fortran, but only if the compiler

does this for you. All other API's except MPI-2 largely or completely ignore I/O.

Generally serial writes from a single processor (or a single thread) works, as does

parallel reads from any number of processors (but not from multiple threads). In

some cases, parallel writes to non-overlapping records in a single file can be faster

than serializing all writes - but there are no guarentees that this will work.

OpenMP has additional problems because there is just one process, and therefore

one set of I/O files and pointers. Threaded I/O is actually well understood in C

[13]. If the OpenMP Fortran's I/O library is "thread safe", any attempt to read and

write in parallel to the same file (and perhaps to different files) will automatically be

serialized. If the library is not safe, then the program must serialize I/O explicitly.

Since there is only one I/O name space, only one thread should open and close a

file and multiple reads of the same file from different threads will provide a different

record to each thread. In contrast, for SPMD processes, each process must open and

close a file it does I/O to and multiple reads of the same file from different processes

will provide each with the same record.

NLOM inputs scalar control variables by reading them independently on all proces-

sors. This works well for process-based SPMD models, and is much less (program-

ming) effort than the alternative of reading them on one processor and then broad-

casting them to all others. This does not work for OpenMP, so NLOM now reads

scalars into shared temporary variables from one thread under OpenMP (and into

local temporary variables on all processes otherwise) and then copies the temporary

variables into local variables on all threads/processes. This works with both threads

and processes, but is not very transparent code. If OpenMP was the only target, it

might be possible to leave input scalars in shared variables which would make the I/O

code very similar to the uni-processor original (except for a few compiler directives).

MPI-2 contains an extensive API for parallel I/O. It is perhaps the most important

reason for migrating from MPI-1 to MPI-2, particularly since the performance of MPI-

2 put/get is as yet unknown. MPI-2 I/O looks like collective non-blocking message

190

passing.Very generalpatternsof I/O areallowed,but probablya muchsmallersubset
will actually provide goodperformance.Portability is an issue,particularly sincethe
API includes potentially machinespecific"hints" on file layout etcetera.
The fact that MPI-2 I/O is non-blocking implies that it is asynchronousI/O. On
typical scalablesystems,with hugememorycapacities,it is often practical to buffer
an entire dump of all prognosticvariables.Which suggeststhat most OGCM's really
require asynchronousI/O more than they do parallel I/O. There is no standard
method for specifying asynchronousI/O in Fortran, but if it is availableOpenMP
can easily implement asynchronousarray I/O using a sharedmemory buffer (even
thoughparallel I/O is not typically possible).Similarly a HPF compilermight provide
non-standardasynchronousI/O. The other programmingmodelsmay needsufficient
unusedmemoryon a singleprocessor(rather than globally) to hold an entire dump
of all prognosticvariablesbeforeasynchronousI/O becomesa possibility.

Computation and Communication

In the interests of portability and flexibility, NLOM (like many other domain decom-

position codes) separates computation and communication into distinct phases of the

algorithm (and into distinct subroutines). However, there are cases where overlap of

computation and communication is desirable or even essential. BSPlib and SHMEM

do not allow such overlap at all. MPI-2 put/get is non-blocking, but may be im-

plemented like BSPlib on some machines. There are MPI-1 non-blocking message

passing calls, which certainly reduce overall latency when sending several messages

but may not allow true overlap of communication and computation. In HPF, all

communciation is scheduled by the compiler and overlap of communication and com-

putation is one way for the compiler to achieve good performance but it is largely

outside the programmers control. F-- does not allow overlap except at the level of the

compiler's scheduling of loads and stores, but it does provide very low latency which

may make algorithms with intermixed communication and computation viable (also

true to a lesser extent for SHMEM and MPI-2 put/get). OpenMP has similar latency

to F--, and threads provide the only guaranteed user-level method to control the

overlap of communication and computation (one thread communicates while another

computes). OpenMP SPMD threads are not the most suitable starting point for this

kind of thread use, but they are probably still easier to use than native threads. A

good example of latency hiding by using threads is SC-MICOM [14], which hides the

communication cost between SMP "boxes" by having more sub-tiles than processors

and doing the sub-tiles near the edge of the tile first and then updating, via MPI-1,
the halos with the other SMP boxes while the interior sub-tiles are calculated. This

is also an example of two level parallelization (threads and MPI-1), which is probably

going to become more common. The combination of OpenMP and MPI-1 provides the

most opertunity for latency hiding, but MPI-2 put/get for near communication and

and MPI-1 message passing for far communication is probably also going to become

very common.

191

Porting to NLOM

NLOM was originally designed so that the single source code worked for data parallel

compilers (CM Fortran) and for SPMD message passing. In addition to replacing 2-D

loops with 4-D loops (which can also help in cache reuse), this required 2,600 HPF

DISTRIBUTE directives and 500 HPF INDEPENDENT directives. The directives

are implemented via cpp macros, to allow for machine and compiler specific variations

(e.g. CM Fortran and HPF). The total code is 69,000 lines of Fortran 77 including

22,000 standard comment lines of which 500 are compiler directives (many are repeats

in different dialects). In addition there are another 60,000 lines of comments in a

standard format required for all Navy operational models. The communication API

consists of 32 subroutines, and 10,000 lines of code are used in total to implement the

various versions (autotasking, data parallel, MPI-1, SHMEM). There are 6,500 lines

of code in five versions of 16 machine specific (primarily I/O) routines, and there is

also significant parallel programming model specific, and machine specific, code in the

direct Helmholtz's equation solver. Overall the single node version of NLOM would

actually use 41,000 lines of code including 15,000 comments.

Adding support for OpenMP required generating 6,500 lines of code for OpenMP

alone, although most of these are identical to the SHMEM version. The shared

parts of the code required 900 OpenMP compiler directives, 500 to characterize all

COMMON's (could be reduced using INCLUDE) and 400 primarily to handle I/O.

The I/O logic required other modifications, as outlined in the I/O section above, so

that all I/O is performed by the master thread only. The OpenMP standard does not

allow SAVE to be used for local variables in a portable program. NLOM already used

named COMMON for most such variables, because of previous portability problems

with local SAVE. However, local variables initialized with a DATA statement are

implicitly saved and several of these had to be removed from NLOM to allow OpenMP

to work.

Adding MPI-2 put/get will formally require modifications to 6,500 lines of code,

but most of these will be identical to the SHMEM version. Only 110 SHMEM GET

calls will need replacing, plus any necessay modifications to the synchronization logic.

Additional macros will be required to allow some subroutines to use MPI-1 and others

to use MPI-2 on a machine by machine basis.

Since NLOM already has an array I/O API that is called collectively by all nodes (9

subroutines, 700 non-comment lines), adding MPI-2 I/O should be straight forward.

For example, adding support for the IBM "Parallel I/O File System" required only

50 additional lines of code.

Test problems

Three NLOM-based benchmarks are used to evaluate performance.

available at ftp://ftp7320.nrlssc.navy.mil/pub/wobnch.

Source code is

192

q_

E

0.001

0.0001

le-05

•J ,, al

.1_, o''_ /¢. /

,......_::: 3".: •- -_

I I I I I I I I

4 8 16 32 64 128 256 512 1024
halolen_h

Figure 1: Best HALO times on 16 processors

{D

E

0.001

0.0001

I e-05

SHMEM+BARRIER-ORIGIN --*---

OpenMP+BARRIER-E10000 _/''.f
OpenMP-E10000 _,..'//-/'
SHMEM-ORIGIN -"-- _j.--" /

SHMEM+BARRIER-T3E __........, ..J,=........." ,"_" /"'""''

,..-* ,,- /

......... e

I I I I I I I I

2 4 8 16 32 64 128 256 512
halo length

1024

Figure 2: Shared memory HALO times on 16 processors

193

HALO

The HALO benchmark simulates a NLOM 2-D "halo" exchange for a N by N sub-

domain with N - 2...1024. There are separate versions for each programming model.

These can be used to compare exchange strategies for a given programming model, or

to intercompare models. HALO puts a premium on low latency, but so does NLOM

as a whole and HALO performance correlates well with overall NLOM _communica-

tion performance. Figure 1 shows performance for the best HALO implementation

of several programming model on a range of 16-processor machines. BSPlib is very

slow, apparently because a "superstep" barrier involves three actual barriers. The

best MPI-1 implementation is typically persistent ISEND then IRECV, ' and MPI-1

performance is similar on all scalable systems shown. Note that the "shared nothing"

IBM SP does about as well as shared memory systems using MPI-1. Finally, the

1-sided memory methods are fastest (i.e. have the lowest latency) where applicable.

Figure 2 shows 1-sided memory methods in more detail, and illustrates that local

synchronization is faster than global barriers except on the Cray T3E.

RBSOR

machine

Cray T3E

Cray T3E

Cray T3E

Cray T3E

library

SHMEM

SHMEM

SHMEM

SHMEM

SGI Origin 2000 SHMEM

SGI Origin 2000 SHMEM

SGI Origin 2000 SHMEM

SGI Origin 2000 OpenMP

SGI Origin 2000 OpenMP

SGI Origin 2000 OpenMP

Sun El0000 Sun MPI

Sun El0000 Sun MPI

Sun El0000 Sun MPI

HP SPP-2000 HP MPI

HP SPP-2000 HP MPI

HP SPP-2000 HP MPI

IBM SP

IBM SP

IBM SP

IBM SP

IBM MPI

IBM MPI

IBM MPI

IBM MPI

I n°des II RBSOR

16 4.902

32 2.035

64 1.115

128 O.58O

16 3.908

28 1.687

56 0.924

16 2.697

28 1.540

56 1.061

16 8.940

32 3.873

56 1.793

16 3.401

32 1.614

64 0.761

16 2.580

32 1.562

64 0.955

128 0.892

XCTILR

0.100

0.077

0.067

0.046

XCNORM 1[speedup

0.782

0.414

0.233

0.123

(450MHz)

2.41 x16

1.83 x32

1.92 x64

0.969 0.769 (195MHz)

0.308 0.366 2.32 x16

0.199 0.218 1.83 x28

0.156 0.549 (195MHz)
0.109 0.477 1.75 x16

0.285 0.299 1.45 x28

1.883 1.489 (250MHz)

1.166 0.915 2.31 x16

0.504 0.501 2.16 x32

0.486 0.651 (180MHz)

0.212 0.356 2.11 x16

0.153 0.214 2.12 x32

0.625

0.465

0.324

0.411

0.227

0.204

0.163

0.167

(135MHz)

1.65 x16

1.64 x32

0.98 x64

Table 1: Time in seconds for 27 2048x1344 Red-Black SOR solves

The RBSOR benchmark is a stand alone test of the red-black SOR iterative solver

194

used by NLOM. Three wall clock times are recorded, a) total (RBSOR), b) halo
exchange(XCTILR), and c) globalsum (XCNORM). This benchmarkis muchsimpler
to get running than the full NLOM code,and it providessomeindication of both
computation and communicationperforamanceon a given machine. However, the
computational kernalof RBSORis not necessarilyrepresentativeof NLOM asawhole
(comparetable 1, RBSOR,with table 2, NA824). The OpenMPtimesona SGI Origin
2000comparefavorably with SHMEM times. The SunEl0000 isshowingsuper-scalar
speedup,but relatively poor computational kernal speed.

NA824

machine method

Cray T3E-900

Cray T3E-900

Cray T3E-900

Cray T3E-900

Cray T3E-900

SGI Origin 2000

SGI Origin 2000

SGI Origin 2000

SGI Origin 2000

SGI Origin 2000

SGI Origin 2000

SGI Origin 2000

I nodes

SHMEM 14 44.1 mins

SHMEM 28 21.0 rains

SHMEM 56 10.2 mins

SHMEM 112 5.7 mins

SHMEM 224 3.4 mins

SHMEM 14 75.3 mins

SHMEM 28 31.7 mins

SHMEM 56 15.5 mins

SHMEM 112 7.8 mins

OpenMP 14 96.9 mins

OpenMP 28 38.0 mins

OpenMP 56 21.1 mins

OpenMP 112 12.7 mins

14

28

56

MPI 14 39.2 mins

MPI 28 20.0 mins

MPI 56 11.2 mins

MPI 112 7.7 mins

MPI 224 5.1 mins

SGI Origin 2000

HP SPP-2000 MPI

HP SPP-2000 MPI

HP SPP-2000 MPI

IBM SP

IBM SP

IBM SP

IBM SP

IBM SP

time Mflop/s speedup

1,064

2,236

4,591

8,184

13,601

622

1,481

3,031

6,030

484

(450 MHz)
2.10x 14 nodes

2.06x 28 nodes

1.79x 56 nodes

1.68x112 nodes

(195 MHz)

2.38x 14 nodes

2.05x 28 nodes

1.99x 56 nodes

(195 MHz)

1,233

2,225

3,682

2.55x 14 nodes

1.80x 28 nodes

1.65x 56 nodes

56.3 mins 833 (180 MHz)

25.1 mins 1,868 2.24x 14 nodes

15.1 mins 3,107 1.66x 28 nodes

1,197

2,345

4,169

6,060

9,208

(135 MHz)

1.96x 14 nodes

1.79x 28 nodes

1.45x 56 nodes

1.51x112 nodes

Table 2: Performance of NLOM (NA824)

The NA824 benchmark is for 3.05 model days on a 1/32 degree 5-layer Atlantic

Subtropical Gyre region (grid size 2048 x 1344 x 5). The run includes all the typical

I/O and data sampling, but it does not measure initialization time (before the first

time step). The sustained Mflops estimate is based on a hardware trace of a single

processor Origin 2000 run (without MADD ops), i.e. is "useful" flops only. Like most

heavily used benchmarks, this is for a problem smaller than those now typically run.

The NA824 speedup from 28 to 56 processors is similar to the 112 to 224 speedup for

195

the four times larger 1/64 degreeAtlantic model. Illustrating that NLOM is indeed
a "scalable" code. Table 2 summarizesthe performanceresults. Note that for 28
processorsand above1/8th of the tiles are beingdiscardedat compile time because
they areover land, thus the 28processorwall time is equivalantto a 32processorwall
time with no discardedtiles. Linear speedupfrom 14 to 28processorsis not 28/14
but 32/14 (i.e. not 2x but 2.29x). The Cray T3E is showingthe best scalability to
largenumbersof nodes,but the IBM SP is competativeon up to 64processors.The
SGI Origin 2000is showing a sustainedcacheeffect,with speedupsof two or more
for eachdoublingof nodes.OpenMP on the Origin is currently slowerthan SHMEM,
but communicationroutines performsimilarly betweenthe two methods.SoOpenMP
compilation is slowing down the compuationalkernals. This is a beta compiler and
improvementscan be expected in the future. The HP/Convex SPP-2000is faster
then the SGI Origin 2000if only about half of the 16processorsin eachhypernode
are used (the 14 and 28 processorruns were on 2 and 4 hypernodesrespectively).
Like many other SMP systems,the SPP-2000'smemorybandwidth doesnot sustain
all the supplied processorswhen running memorybound jobs.

Conclusions

Retrofitting a scalable programming model to an existing scalable ocean code such

as NLOM is not an ideal basis for comparision, even though NLOM is designed

to accept alternative programming models. The separation of communication and

computation phases for much of NLOM, and the fitting of each programming model

into the existing communication API, puts at a disadvantage programming models

that are easy to use and that favor mixing of communication and computation. Even

so, this comparison provides a baseline for performance on an actual application.

Early OpenMP compilers are showing promise, but MPI-2 put/get will probably be

most programmers first exposure to 1-sided communication. We must hope that

MPI-2 implementations will approach the performance of SHMEM and OpenMP.

Acknowledgements

This is a contribution to the 6.2 Global Ocean Prediction System Modeling Task. Sponsored

by the Office of Naval Research under Program Element 62435N. Also to the Common

HPC Software Support Initiative project Scalable Ocean Models with Domain Decomposition

and Parallel Model Components. Sponsored by the DoD High Performance Computing

Modernization Office. The benchmark simulations were performed under the Department

of Defense High Performance Computing initiative, on (i} a SGI Origin 2000 and a HP

SPP-2000 at the Naval Research Laboratory, Washington D.C., (ii} a Cray T3E at the

Naval Oceanographic Office, Stennis Space Center, Mississippi, and (iii) an IBM SP at

Waterways Experiment Station, Vicksburg, Mississippi.

196

References

[1] Hurlburt, H.E. 6J J.D. Thompson (1980). A numerical study of Loop Current intrusions

and eddy shedding. J.Phys. 0ceanogr., 10, pp 1611-1651.

[2] WaUcraft A.J (1991). The NRL Layered Ocean Model users guide. NOARL
Report 35. Naval Research Laboratory, Stennis Space Center, MS, 21 pp.

http://www7300.nrlssc.navy.mil/html/images/users_guide.ps.gz

[3] Moore D.R. _ A.J. Wallcraf-t (1996). Formulation of the NRL Layered Ocean Model

in Spherical Coordinates. NRL Contractor Report CR 7323-96-0006 Naval Research

Laboratory, Stennis Space Center, MS.

[4] Koelbel C.H., D.B. Loveman, R.S. Schreiber, G.L. Steele Jr., M.E. Zosel (1994). The

High Performance Fortran handbook. MIT Press.

[5] Walleraft A.J _ D.R. Moore (1996). A Sealable Implementation of the NRL Layered

Ocean Model. NRL Contractor Report CR 7323-96-0005 Naval Research Laboratory,

Stennis Space Center, MS.

[6] Wallera_ A.J _ D.R. Moore (1997). The NRL Layered Ocean Model. Parallel Comput-

ing 23, pp 2227-2242.

[7] Snir M., S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra (1996). MPI: the

complete reference. MIT Press.

[8] Cray Research Inc. (1996) Application Programmer's Library Reference Manual. Cray
Research SR-2165

[9] Message Passing Interface Forum (1997) MPI-2: Extensions to the Message Passing

Interface. http://www.mpi-forum.org/docs/docs.html

[10] Goudreau, M.W., J.M.D. Hill, K. Lang, B. McColI, S.B. Rao, D.C. Stefanescu,
T. Suel, T. Tsantilas (1996) A proposal for the BSP worldwide standard library.

http://www.bsp-worldwide.org

[11] Numrich R. W., J.L. Steidel, B.H. Johnson, B.D, de Dinechin, G. Elsesser, G. Fischer,

T. MacGonald (1997) Definition of the F-- extension to Fortran 90. Proc. lOth Int.

Workshop on Language and Compilers for Parallel Computers Springer-Verlag

[12] OpenMP Organization (1997) OpenMP Fortran Application Programming Interface

http://www.openmp.org

[13] Kleiman, S., D. Shah, B. Smaalders (1996) Programming with threads SunSoft Press.
Prentice Hall.

[14] A. Sawdey, M. O'Keefe, W. Jones. A General Programming Model for Developing

Scalable Ocean Circulation Applications. 1996 ECMWF Workshop on the Use of Parallel

Processors in Meteorology http://www-mount.ee.umn.edu/okeefe/micom/

197

198

Issues in the Design of
Parallel Ocean Circulation Models

Aaron C. Sawdey

Cray Research

Eagan, Minnesota

sawdey@ cray. com

Matthew T. O'Keefe

University of Minnesota

Minneapolis, Minnesota 55455
+1 612 625-6306

okeefe@ ece. umn. edu

http ://www-mount. ee. umn. edu/-okee fe/micom

Abstract: In this extended abstract we describe a programming model for parallel ocean

circulation codes. We have applied this model to the Miami Isopycnic Coordinate Ocean

Model (MICOM) and are in the process of applying it to the Princeton Ocean Model

(POM). The model exploits highly parallel machines that have memory and network

hierarchies to achieve scalable, efficient performance combined with ease of

programming.

199

Introduction

Since the early 1980's, the growth of the computing speed of the largest supercomputers

has been dramatically increased through the use of parallel processing. As a result of this

increase in computing power, many fields have replaced physical experiments and tests

with computer simulation and modeling. This is certainly true in ocean circulation and in

climate research. However, it can be difficult to develop applications that run efficiently

on supercomputers with hundreds or thousands of processors.

Several approaches have been taken to the difficult task of writing parallel programs.

From the programmer's perspective, the easiest method might be to use a parallel

language such as High Performance Fortran (HPF) that supports array parallelism. In

parallel languages like HPF, the programmer has a global view of the data being

manipulated and the compiler assumes responsibility for distributing the data and work

across a parallel machine. Shared-memory parallel programming using compiler

directives such as the new OpenMP standard is becoming more widely used for smaller

numbers of processors. However, direct shared-memory programming relies on efficient

shared-memory support from the underlying hardware. Thus it is not directly applicable

to clustered machines or very large systems such as the Cray T3E and IBM SP/2 that do

not have the necessary level of shared-memory support. The other common method of

creating parallel programs is to write a message-passing program. With this method, the

programmer is required to write a program from the perspective of a processor in a

parallel machine, explicitly specifying when the processor should send or receive

messages to and from its neighbors. If written correctly, message-passing parallel

programs are efficient and achieve high performance; however, they can also be difficult

to write and debug.

Standards such as HPF have created languages that can be used to write parallel

programs. Unfortunately, these languages often demand too much of the compiler.

Because of the amount of information a HPF compiler must discover through analysis to

produce an efficient parallel program, the compilers end up either producing low

execution performance or being very complex. Compiler complexity can lead to

incomplete implementation of features deemed less important by the compiler

developers, larger numbers of compiler bugs, and excessively long compile times.

An easier solution that works for many problem areas is for the programmer to write

codes that conform to a specific coding style. This enables us to apply straightforward

compiler analysis to automate some of the difficult tasks required to produce a parallel

program. In addition, we can make some useful assumptions about the code because of

the guidelines the programmer has agreed to follow. These assumptions would be

difficult to validate in an arbitrary program, even if advanced compiler analysis

techniques were used. It is also possible that a programmer unaware of these

assumptions would inadvertently violate them. We have used a specific coding style we

call self-similar programming to accomplish this; this style is particularly applicable to

applications in ocean circulation.

200

Self-Similar Programming

Our goal is to make it easier for programmers to write parallel programs that have

properties that will enable them to run well on parallel supercomputers:

• The fraction of the program that must be executed by a single processor or thread

of control should be very small.

• The communication patterns of the program should map well to the

interconnection network of the underlying hardware.

• The parallel work should be as coarse-grained as possible; that is, there should be

as much work between synchronizations as possible.

We accomplish this goal by providing the programmer with two complementary pieces.

The first piece is the self-similar programming model, which we believe leads to

programs that have all of the properties listed above. The second piece is a powerful

data-flow analysis tool designed to help the programmer with the problems that arise in

writing self-similar parallel programs [4].

Our approach is a middle ground between writing programs in a new parallel language

like HPF and applying a sophisticated parallelizing compiler to existing code. Both of

these approaches are more general than ours but each also has its limitations. For

example, some programs (including some self-similar programs) cannot be fully analyzed

by parallelizing compilers because they use programming techniques that can only be

analyzed with the use of data available when the program is running. However, a good

parallelizing compiler should be be able to produce efficient code from a self-similar

parallel program if it can avoid excessive synchronization between parallel loop nests.

Unfortunately, it appears that current commercial parallelizing compilers are not able to

avoid synchronizing after every parallel loop nest.

Our programming model applies to programs that have the self-similarity property,

though not all dimensions or axes of the program are required to have this property. The

program dimensions that are self-similar have the following characteristics:

Loops along the dimension span the entire length of the dimension. In other

words, if a dimension of the arrays in the program is declared to contain elements

I to N, then loops that index that dimension should run from i to N as well.

When the program is computing new values for index i of a dimension, it may use
other elements from indices i+d of that dimension. The value of Idl must have an

upper bound b such that b <<N, where N is the length of the dimension.

Because of this characteristic, data use along each self-similar dimension must be

local.

• The elements along the dimension can be computed in any order. There are no

inter-iteration dependences in loops along the dimension.

201

Eachdimensionof theprogramwhich is self-similaris calleda parallel dimension, and

the dimensions that are not self-similar are called serial dimensions. Loops that index a

parallel dimension are called parallel loops. The loops that do not index a parallel

dimension are called non-parallel or serial loops. A self-similar code can be represented

as a mathematical operator F that produces a new state at point p from the old values at p

and neighbors of p:

P,=i÷l = F(p,=i, neighbors(p,=i))

A more general definition of a self-similar algorithm is that the same algorithm used for

updating the entire problem domain can be used to update any subsection of the domain

without altering anything other than loop bounds, array bounds, and boundary conditions.

This is the origin of the term in this context; the algorithm for a large domain is the same

as the algorithm for a small domain, which is analogous to the way fractal structures have

the same characteristics when observed at a variety of different length scales. Both these

definitions hold for many ocean circulation codes, which use regular, finite-difference

numerical techniques in the horizontal (parallel) dimensions. The vertical dimension is
most often serial.

Applications

The Miami Isopycnic-Coordinate Ocean Model (MICOM) [1] has been our primary test

case for self-similar parallel programming using overlap areas. MICOM models the

circulation of water in the ocean. This circulation is driven by density differences within

the ocean and by interaction with the atmosphere at the surface. Evaporation, which is

affected by water temperature and air humidity, and precipitation determine whether

there is a net loss or gain of water at the surface. Wind both adds horizontal momentum

to the surface waters and adds turbulence, which affects the depth to which water is

mixed vertically. The difference between water and air temperature also affects vertical

mixing. When the air is colder than the water, it cools the water and causes vertical

mixing due to convection. Except for the vertical mixing that takes place near the surface,

there is very little vertical mixing within the ocean. Water masses with different densities

remain segregated and do not mix.

In order to capture this segregation of water by density within the ocean, MICOM treats

the ocean as a stack of variable-thickness layers. The topmost layer, known as the mixed

layer, has a variable density and represents the layer that is vertically mixed due to its

interaction with the atmosphere. The layers below the mixed layer are assigned fixed

densities, which increase with increasing depth. The term isopycnic used in the name of

the model refers to this constant-density treatment.

202

Becausetheheatcapacityof theoceanis severalordersof magnitudelarger than that of
the atmosphere,accurateheat transportwithin the oceanis important for long-term
climatesimulations.Thedensity-basedverticalcoordinateusedin MICOM is oneway to
achieve this by avoiding artificial mixing of water with different densitieswithin the
oceanmodel.

Theequationof stateof saltwater,whichdeterminesdensityasafunction of temperature
andlevel of salinity,canbesolvedfor temperatureasa functionof salinity anddensity.
This allowsMICOM to storeonly the salinityof the waterat eachpoint of eachinternal
oceanlayer; whentemperatureis desired,it canbecomputedfrom the equationof state
giventhe densityandsalinity.Thedensitiesof the internallayersof oceanin MICOM are
fixed parameters;theyaresetby theuserat thebeginningof asimulation.

MICOM usesfinite-differenceapproximationsto solvedifferential equationsdescribing
themotion of waterwithin eachhorizontallayer.Two sizesof time stepareusedto time-
integrateMICOM's state.Themaintimestepis usedto integratetheequationsdescribing
the behavior of eachelement of eachof the horizontal layers.However, barotropic
gravity waves,whichaffectall of the layers,propagatemanytimesfasterthananyother
signal in the model. To improve computationalefficiency, this barotropic signal is
subtractedout, propagatedfor manysmalltimestepswith asingle-layermodel,andthen
addedback into themulti-layermodel. Theratiobetweenthebarotropictimestepandthe
maintimestepis approximately20:1.

Figure 1: Domain decomposition of the Baltic Sea with land subdomains removed.

203

In Figure 1weshowadomaindecomposition over the Baltic Sea. Note that subdomains

in the partitioning that contain no water (dark grey in the figure) are not included in the

parallel calculation, improving efficiency and reducing memory [3].

25

_20
E

¢..

10

0

800x800 problem size
i i i i i i

Selfsimilar(MPI)
] ,_'. -_', Looplevel

i _ I) I I

2 4 8 16 32 64
Processors

Figure 2: The performance of the parallel MICOM and MICOM 2.6 using loop-level

parallelism in timesteps per minute for an 800x800 problem size on an SGI Origin2000.

In Figure 2 we show the scaling achieved for the parallel self-similar MICOM. This code

was parallelized manually but later analyzed using our compiler tool TOPAZ [4] to
determine the extent of the overlap regions required for parallel execution. The self-

similar parallel MICOM scales super-linearly to 64 processor on the Origin2000. In

contrast, the loop-level parallel code generated automatically using the SGI optimizing

parallel Fortran compiler has limited scalability past 4 processors. This is due primarily

to the order-of-magnitude increase in the number of barrier synchronizations required

and in the reduced locality of this code.

Our current work includes applying our compiler tool TOPAZ to analyze and parallelize

the Princeton Ocean Model (POM) [2]. We intend to reuse much of the parallel code

infrastructure constructed for the MICOM effort. In addition we continue to perform

scaling and performance testing of the MICOM code on highly parallel MPPs, DSMs,
and clusters to better understand limits to its performance and scalability.

204

References

[1] R. Bleck and E. Chassignet, "Simulating the Oceanic Circulation with Isopycnic-

Coordinate Ocean Models," in S. Majumdar and E. Miller, editors, The Oceans:

Physical-Chemical Dynamics and Human Impact, chapter 2, pages 17-39, Pennsylvannia

Acad. Of Science, 1994.

[2] A. Blumberg and G. Mellor, "A Description of a Three-Dimensional Coastal Ocean

Circulation Model," in N. Heaps, editor, Three-Dimensional Coastal Ocean Models, vol.

4, pg. 208, American Geophysical Union, 1987.

[3] Aaron C. Sawdey, Matthew T. O'Keefe, Rainer Bleck, and Robert W. Numrich, "The

Design, Implementation, and Performance of a Parallel Ocean Circulation Model",

Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processors in

Meteorology, Reading, England, November 1994. Proceedings published by World

Scientific Publishers (Singapore) in Coming of Age, edited by G-R. Hoffman and N.

Kreitz, 1995.

[4] Aaron Sawdey and Matthew O'Keefe, "Program Analysis of Overlap Area Usage in

Self-Similar Parallel Programs," to appear in Proceedings of the lOth International

Workshop on Languages and Compilers for Parallel Computing, Minneapolis, MN,

August 1997.

205

206

Author: John M. Levesque

Applied Parallel Research
1723 Professional Drive

Sacramento, CA 95825

levesque@apri.com

Optimizing POP for a Cache Based Architecture

Today the major computational resources for the scientific community are cache based processors with high

megahertz rates and multiple functions units, their Macho flop numbers approach a Gigaflop for a single processor.

When researchers port their application to these systems they see anywhere from 4 to 100 MFLOPS. The cause for

this lower flop rate is the utilization of the cache on the microprocessor. Given a very high megahertz rate the

memory cannot keep up with the processor and the cache is placed between memory and the CPU to provide higher

memory bandwidth. This high memory bandwidth is only achieved when all of the cache line fetched to the cache is
used.

The Parallel Ocean Program (POP) was developed for the CM5 and MPP's in Fortran 90. When first ported to the

SGI - Origin it achieved a maximum of 30-40 MFLOPS on a single processor. Over the past six months the

performance of POP has been increased to over 100 MFLOPS per node. In order to achieve this increase in

performance cache utilization was increased to the point that there are no cache misses other than those from the
first fetch of a line into cache.

In the process of optimizing POP we developed a strategy and used tools that can be applied to other applications.

The approach was to map out the computational arrays in the cache for the major looping structures. The layout of

the initial POP program resulted in significant level 1 and 2 cache misses due to the two way associative cache. We

found that re-mapping the arrays to eliminate these misses was facilitated by moving the depth dimension of the

arrays to the first index. This also necessitated that the K (depth) loop become the inner loop for the computation.

The cache mapping was performed using a cache analysis tool named CacheVU.

The study found that the F90 array syntax was not conducive to cache re-use and that the F90 program used many

temporary arrays that hurt cache utilization. The solution to this problem, given that the POP developer desired to

program in F90 array syntax was to translate the F90 to F77 using a pre-processor called zAPR. The details of the
zAPR translation were formulated during the POP analysis. Cooperation between the tool developers and the POP

developers has resulted in a F90 programming style that can be efficiently translated into optimal code.

This paper is the result of a collaboration between Christopher Kerr, Bob Malone and John Levesque.

207

208

PERFORMANCE OF BAROTROPIC OCEAN MODELS
ON SHARED AND DISTRIBUTED MEMORY

COMPUTERS

S. Piacsek and A. Wallcraft

Naval Research Laboratory, Code 7320

Stennis Space Center, MS 39529-5004, USA

piacsek@nrlssc.navy.mil, ÷1 228-688-5316, FAX: +1 228 688-4759

P. Jayakumar

University of Southern Mississippi/NAVO-MSRC PET Program

Stennis Space Center, MS 39529-5004, USA

L. Lonergan

Northrup Grumman Corporation/NAVO-MSRC PET Program

Stennis Space Center, MS 39529-5004, USA

M. Young

Naval Research Laboratory, Code 5593

Washington, DC 20375, USA

Abstract

The efficiencyof explicittime integrationschemes forbarotropicmodels of

theMediterranean were investigated,incontextofthe vectorizationand parallel

modeling approaches employed on differentarchitectures.The main focus of

interestwas the scalabilityand MFlops output of the codes as a functionof
domain size.

For simulationswith realwinds,mesh sizesranged from 25 km down to 1.8

km (gridsof 180x64 to 2048xi024),with the coarseresolutionresolvingonly

major straitslikethat of Sicily,and the high resolutioneven narrow straits

likeGibraltarand Messina. Sincethe memory requirementofthesegridsonly

ranged to 70 Mbytes, we alsoperformed simulationswith idealized,precom-

puted winds forwhich mesh sizesranged down to 280m, to produce a total

memory requirementof4 Gbytes. The analysisand interpretationof the latter

resultsforthe Mediterranean has not been performed yet.The explicitscheme

consistedofthe leap-frogscheme forthe Coriolis,pressuregradientand advec-

tion terms, and 'lagged' times for the diffusion terms. The platforms utilized

included the CM500-E (with CMF), the Cray C90 and Tg0 (with FTg0 -03

auto-tasking), the Cray T3E (with HPF and MPI), the SGI Origin2000 (with

if7 -pfa -02 power fortran,HPF and MPI), the IBM SP2 (with HPF) and the

Sun Global Works (with HPF).

The MPI version of this code employed a 2-D tiling decomposition, and

parallel runs were performed up to 512 processors on the T3E and up to 64

processors on the SGI Origin. The T3E 512 processors achieved an 82 %

scaling efficiency relative to 32 CPU's. The SGI 64 processors achieved a scaling
efficiency of 100 % vs. 32 processors, but less than linear for smaller number

of processors. The auto-tasking versions were quite efficient even for small

program sizes (17 Mb) and for small number of processors, with the SGI -pfa

compiler option (with -02 optimization) giving scalings of 1.9, 3.7, and 15.4 for

209

2, 4 and 16 CPU's, respectively, while the Cray T90 -03 option (with FT90)

gave scalings of 3.6 and 6.6 for 4 and 8 processors, respectively.

indent MFlops output reached 11.7 GFlops for the 512 node T3E, and 7.4

GFlops for the 128 node O2K.

1 Introduction

The recent advances in high-performance computing, especially on massively- parallel

machines, have encompassed ocean models as well. These advances also include the

reformulation and design of numerical schemes especially suited for parallel machines.

On the one hand, progress has been achieved by porting older codes to new architec-

tures; on the other hand, some codes have been designed from scratch for the new

machines. In the 1992-1998 period at the Naval Research Laboratory, great advances

were made in ocean modeling on a series of parallel computers. The principal machine

used up-to-now by the group was the CM5-E, with 256 nodes and a total memory of

4 Gigawords; currently they are the Cray T3E, with 512 nodes and a total memory

of 128 GB, and the SGI Origin2000, with 128 processors and 32 GB of memory.

The large memory and throughput of these machines enabled us to push the frontiers

of ocean modeling much further, solving some problems important for Navy environ-

mental prediction and climate simulation. Among these were the simulation of the

reapparance of the 1983 E1 Nino 8 years later in the western Pacific, having traced

the westward propagation of the constituent Rossby waves with sufficient spatial res-

olution and phase accuracy [Jacobs et a1,1994]. The crucial factor in ocean modeling

has always been resolution, both in the horizontal and vertical. High resolution re-

duces truncation and dispersion errors; in addition, it allows the size of the friction

coefficient to be kept small, increasing the amplitudes of the ocean currents. A fur-

ther advantage is the better resolution of gradients and the decrease in eddy sizes

that can be resolved, extending the solution spectrum and energy cascade, crucial for

long term simulations. A large part of the lateral friction employed in ocean models

is necessary for numerical rather than physical reasons, to keep solutions stable and

smooth.

There appeared to be two problems in the beginning of our parallel computations that

had to be tackled: (a) how to migrate existing ocean models from a shared memory

to a distributed memory computer; (b) a rethinking of the numerical techniques

and algorithmic approaches to take advantage of the massively parallel nature of

the new computers. On data-parallel machines, such as the CM5, this migration

required a complete rewrite of the existing model codes into CM Fortran (CMF).

On distributed memory machines, the use of HPF (High Performance Fortran) was

facilitated by the existing CMF codes, from which HPF codes could be generated in

about a week or two. Some of the large 3-D codes were ported directly from the Cray

C90 to the T3D and T3E via message-passing: this typically involved inserting MPI

message-passing function calls into regular f77 subroutines. On massively parallel

machines, such things as communicating between neighboring grid points are major

210

issues,and the problem revolvesaround a trade-off betweenkeepingall processors
busy ("load balancing") versuskeepingcommunicationdown betweenprocessorsas
much as possible("locality management"). Furthermore,certain numerical schemes
that rely on recursionrelations (e.g. the well-knowntridiagonal algorithm) encounter
the sameproblemsof conflict and inefficiencyonparallelmachinesasthey do onvector
machines. Thus alternate formulations for inverting tridiagonal matrices (e.g. the
Buzbee-Golubcyclic reduction technique[Buzbeeet a1,1971;Schwarztrauber,1977])
had to be invoked.

Forthe major part of the oceanmodelingsubroutines,it wasrelativelyeasyto rewrite
the existing codes;however,certain Helmholtz solversrequiredmajor recodingefforts
to arrive at an efficient program representation(Wallcraft and Moore, 1997). One
problem we found with parallel computersis that performanceon certain codeswas
degradedby necessaryactions that arerequiredat only a small numberof grid points
(e.g. the computation of boundary conditions), since all other processorsare idle
while theseactionsare performed.

For a reviewof somerecentefforts in parallelizingoceanmodels,the readeris referred
to Smith et al (1992),Dukowiczet al (1993),Piacsekand Wallcraft (1993),Bleck et
al (1995), Webb (1995),Oberhuber and Ketelsen (1995), Wallcraft and Moore (1997)

and Ma et al (1998).

The present report will focus on barotropic ocean models that employ explicit time

integration, and do not require the use of a Helmholtz solver. In Section 1 we in-

troduce barotropic models and give will a rationale for their use. In Section 2 we

will give model details, including the numerical scheme for the explicit time stepping

version, and some sample results in the Mediterranean. In Section 3 we present some

performance figures on various parallel platforms.

2 Barotropic Models

2.1 Utility of Barotropic Models

Barotropic ocean models are 2-D and represent the ocean with one deformable layer,

obtained upon integrating vertically the 3-D equations of a hydrostatic ocean. They

include topography of the ocean bottom and (generally) a uniform density. All 3-D

ocean models contain a barotropic mode (i.e. the vertically averaged motion). For a

discussion of these topics, the readers are referred to Bryan,1969,1979; Madala and Pi-

acsek,1977; Blumberg and Mellor,1987; Wallcraft,1991 and Dukowicz and Smith,1994.

It may be asked why barotropic modelling is done at all except in conjunction with

baroclinic modelling? We can give three reasons immediately:

(a) in certain oceanic regions, especially in the winter season, deep convective mixing

can occur which will tend to homogenize the density field over most of the depth range,

so that the barotropic part may represent a significant if not the dominant component

of the total circulation. Thus we can gain a useful insight into its patterns by using

only a barotropic model, at a much lower computational cost.

211

(b) tidal forcescreatethe greatestresponsein the barotropicmode,and their response
must be modeledin shallowwaters.

(c) The third, and probably most important, point is that the free surfaceelevation
couplesdirectly to the barotropic mode.The associatedsurfacegravity waves,with
their fast propagationvelocities,cancausegreat problemsfor the numerical compu-
tations. For various numerical and computational reasons,this makesthe solution
of the barotropic equations the most CPU intensive, and henceexpensive. Hence
it becomesvery cost-effectiveto study the efficiencyand accuracyof the numerical
techniqueson parallel platforms in the 2-D settingof barotropic models,rather than
in a costly 3-D baroclinic setting.

(d) The central role of the free surfacein barotropic models becomeseven more
important whenaltimeter measurementsof the seasurfaceelevationareusedaspart
of the initialization/updating procedurefor real-time prediction. This is becausethe
information about the free surfaceelavation is first passedthrough the barotropic
mode beforeits pressureeffectsare felt by the wholewater column. Thus barotropic
modelsareusedto estimate the atmospheric-pressureinducedseasurfaceelevations,
not only the simple inversebarometereffect,but the so-called'non-isostatic' response
due to moving weatherpatterns. Both this 'non-isostatic' response,and the surface
elevationsdue to tidal forcing,areneededto calibrate altimeter measurementsof sea
surfaceheight [Kantha, 1995].

2.2 Model Equations for a Barotropic Ocean

To shorten and simplify the numerical description, we will present only the finite

difference form of the relevant equations in Cartesian coordinates, using constant

horizontal friction coefficients; extension to spherical geometry and variable friction

coefficients is straightforward. We further assume a constant density, and that the

ocean depth is much greater than the free surface elevation, so that only a linear

form of the continuity equation needs to be utilized. In the same vein, because of the

smallnes of barotropic currents in deep water, we omit the nonlinear advection terms

in this description, though they were included in the code and the simulations.

We will use the nonlinear bottom friction formulation (6), and locate the variables

on a staggered mesh called the Arakawa C-grid [Wallcaft,1991]. In this arrangement

the pressure p and height h variables are located at the center of the mesh boxes, and

the mass tansports U and V at the center of the box boundaries facing the x and y

directions, respectively.

_._ij+l _ _j_-i

At
= fVi_ gH- A--_(h,+W2_-- h,__/2j) '_

+ _---_-7(U_+tj+ U_-x_ + U_3+_+ Uij__ - 4U_j,_'_-_

- (I)

212

Vin+l n-I3 -- _J

At

gH

= -fUji /ky (hij+U2 --hij-1/2) n

A

+X_y2(¼+_ + v___j+ v_+_+ v_j__- 4_,_)"-_

+(_.)_j- c_._ -_ (2)

hT -h7 _ (U_+_m - U_-_/2j)"

where

(Vij.f.1/2 -- Vii_l/2) n

At Ax Ay
(3)

= (U, V) - mass transports in the x- and y-directions, respectively

T_ = [(_'_)_, (T_)y] - wind stress components

= [(Tb)_, (n)y] - bottom stress components

h - free surface elevation

f = 2_ sin 0 - Coriolis parameter for latitude

H(x,y)- topography (ocean depth)

A - coefficient of lateral friction

The bottom stress Tb can be related in a linear or nonlinear way to the bottom velocity,

which in this case has to be replaced by the depth-mean averaged velocity.

The use of a lateral friction coefficient is a general requirement for modeling all

hydrodynamic processes that have strong nonlinearities, and as such it becomes a

necessary part of ocean models as well. Such friction is also necessary for physical

reasons, to represent the subgrid-scale mixing processes.

We assume closed boundaries for our rectangular domain, for which the relevant

conditions are U -- V -- 0. Note that the vanishing of the depth H on land precludes

having to specify the gradients of h, and no loss of parallel efficiency will occur.

2.3 Explicit Time Integration

Explicit time integration schemes are attractive because they do not involve matrix

inversion or the use of iterative solvers. Though we avoid having to use a matrix

inverter to solve for the values at t n+l, we pay the price by being restricted in the

time step we can take. The size of the time step one can march with is governed by the

well-known Courant-Friedrichs-Levy (CFL) stability condition. For wave equations

the time step is limited by the wave speed, in this case the speed of the surface gravity

waves c_, and is given by

At < Ax/c_ (4)

213

Typically, c_ - ¢/-g--H of the gravity waves exceeds 200m/sec in basins of depth

> 4000m, so At is of order 60 sec for a spatial resolution of 14 km normally associated

with eddy-resolving basin-scale (1/8 deg) ocean models.

We must also give expressions for the bottom stress Tb in terms of the velocity com-

ponents. In the non-linear approach, the bottom stress takes the form

'b : Cd.lU[V, %_ : C,_.[UIV (5)

with the value of the drag coefficient Cd taken to be either .0025 or .0050, depending

on the author.

2.4 Barotropic Results in the Mediterranean

We have found that for this simple 2-D explicit code there were no impediments

to either vectorization or parallelization. Our first parallel experiments were on the

CM5. After the basic conversion from if7 to CMF, including calls to MAXVAL,

SUM, etc., an attempt was made to speed up the code by studying serializing or

parallelizing the different spatial dimensions, the size of these dimensions, and the

handling of the boundary conditions. These have been reported on in Piacsek and

Wallcraft (1993).

Using the CM5 code, we carried out simulations of the wind-driven circulation in the

Mediterranean, including the non-isostatic response to moving atmospheric pressure

gradients. For simulations with real winds on all platforms, mesh sizes ranged from

25 km down to 1.8 km (grids of 180x64 to 2048x1024), with the coarse resolution

resolving only major straits like that of Sicily, and the high resolution even narrow

straits like Gibraltar and Messina. Since the parallel versions of the wind interpo-

lation routines have not yet been installed, and 6-hourly forcing at the very high

resolution presented a forbidding amount of data transfer and storage, we ran the

higher resolution cases only with analytic winds.

The model grid for the experiments presented here was 1024x512, giving a horizontal

grid size of 3.5 km. The experiments were carried out on the 256-cpu CM500-E at

NRL-DC, as well as on the various partitions of the CM5 at Minnesota (it ran even on

the 64-cpu partitions). The horizontal diffusivity A was taken to be 50 m2/sec. The

model was forced with GCM-derived synoptic winds obtained from central weather

prediction sites, and run typically for 60 days to equilibrium.

Figure 1 shows the transport vectors for the barotropic circulation in the Tyrrhenian

Sea for the month of November 1994, The development of a strong cyclonic gyre in

the southern half of the basin as winter approaches is quite evident.

Figure 2 shows the transport vectors for the barotropic circulation in the NE corner

of the Eastern Mediterranean Basin for the four seasons of 1994. The strong effect

of the topography, the so-called 'topographic steering' of the barotropic currents, is

quite evident. The well-known, intense cyclonic gyre near the island of Rhodos (the

'Rhodes gyre') is well represented with only the barotropic mode, as is the westward

214

moving Anatolian current south of Turkey. The main seasonal changes appear to be

the appearance of an anticyclonic gyre east of the Rhodes Gyre, and the tendency of

the Rhodes Gyre to become an asymmetric bi-polar vortex pair, in the winter months.

3 MPI Version of Barotropic Code

The MPI version of this code employed a 2-D tiling decomposition, and parallel runs

were performed up to 512 processors on the T3E and up to 64 processors on the SGI

Origin. Since the memory requirement of the grids for the GCM wind simulations

ranged to 70 Mbytes, we also performed simulations with idealized, precomputed

winds for which mesh sizes ranged down to 280m, to produce a total memory re-

quirement of 4 Gbytes. The analysis and interpretation of the latter results for the

Mediterranean has not been performed yet.

In our initial phase of code development, we have used blocking send and receive

calls. All processors were sending messages in parallel, but there was no overlap with

any computations. The code sections shown below are not complete, citing only the

statements relevant to illustrating the MPI approach. In the same vein, the number

of processors and mesh dimensions are only illustration.

3.1

C

MPI Initialization

PROGRAM BTPROGRAM_MPI

include "tapir.h"

parameter(nprocx = 8,nprocy=8)

PARAMETER (NX=2049,NY=I025)

parameter(MyNX=((NX-2)/nprocx)+2)

parameter(MyNY=((NY-2)/nprocy)+2)

common /nl/ comm_2d, coords, left, right,

common /n2/ strided

integer rank, size, ierr

integer comm_2d, coords(2), left, right,

integer strided

logical shift_up, shift_down, shift left,

above, down

above, down

shift_right

3.2 The Forecast Routine for the X-Transport U

SUBROUTINE FCSTUVH

integer left,right,above,down, coords(2),comm_2d,strided

integer nprocx, nprocy,IS,JS

215

C

C

C

logical shift_up, shift_down, shift_left, shift_right

common /nl/ comm_2d, coords, left, right, above, down

common /n2/ strided

shift_up = .true.

shift_down = .true.

shift_left = .true.

shift_right = .true.

JS=2

if (coords (2) .eq. 0)

IS=2

if (coords (1) .eq. 0)

D0 I00 J = JS,JJl

DO i00 1 = IS,Ill

UU(I, J) = U(I,J)

VV(I, J) = V(I,J)

UVEL(I, J) = ZU(I, J)/HT(I, J)

VVEL(I, J) = ZV(I, J)/HT(I, J)

I00 CONTINUE

JS = 1

IS= I

call shift_data(ZH,mynx,myny,

.false., .false., shift_left, .false.)

call shift_data(UU,mynx,myny,

&shift_up, shift_down, shift_left, shift_right)

call shift_data(UVEL,mynx,myny,

& shift_up, shift_down, shift_left, shift_right)

call shift_data(ZU,mynx,myny,

.false., .false.,shift_left,shift_right)

call shift_data(VP,mynx,myny,

& shift_up, .false., .false., .false.)

IL =IIl

if(coords(1) .eq. nprocx-l) IL = II2

DO 200 J = 2,JJl

DO 200 I = 2,1L

IF (MASKU(I,J).NE. 0)THEN

U(l,J) = U(l,J)

1

1

2

2

3

4

5

+ A2(I,J) *ZV(I,J)

+ A24 (I, J) * (ZV(I+I, J)+ZV(I+I, J-l) +ZV (I, J+l)+ZV (I, J))

- A31(I,J)*(ZH(I+I,J) - ZH(I,J))

+ A33(I,J)*(HA(I+l,J) - HA(I,J))

+ A41 ,(UU(I+I,J) + UU(I-1,J) - 2.,UU(I,J))

+ A42 ,(UU(I,J+I) + UU(I,J-1) - 2.*W(I,J))

+ A5,(TAUX(I,J) - TAUBX(I,J)) - A6*UU(I,J)

216

6 - A71.((ZU(I+I, J) +ZU(I, J))*UVEL(I+l, J)
7 - (ZU(I, J)+ZU(I-1, J)) *UVEL(I-I, J))
8 - A72" (VP(I,J) *UVEL(I,J+I)
9 - VP(I, J-l) *UVEL(I,J-l))

ENDIF
200 CONTINUE

The data shift routines are then called from the subroutine detailed in the next

section.

3.3 The Data Shift Routine

subroutine shift_data(psi,mynx,myny,

shift_up, shift_down, shift_left, shift_right)

include "mpif.h"

integer mynx, myny

real psi(mynx,myny)

integer i,j,left, right, down, above, comm_2d,strided

integer ierr, coords(2), stat(MPI_STATUS_SIZE)

logical shift_up, shift_down, shift_left, shift_right

common /nl/ comm_2d,coords,left,right,above,down

common /n2/strided

&

if (shift_up) then

call mpi_send(psi(l,myny-l),mynx,MPI_KEAL,above,0,

comm_2d,ierr)

call mpi_recv(psi(l,l),mynx,MPI_KEAL,down,0,

comm_2d, stat, ierr)

endif

&

&

if (shift_down) then

call mpi_send(psi(l,2),mynx,MPI_P_EAL,down,1,

comm_2d, ierr)

call mpi_recv(psi(l,myny),mynx,MPI_REAL,above,l,

comm_2d,stat, ierr)

endif

if (shift_right) then

call mpi_send(psi(mynx-l,1), i, strided, right,2,

comm_2d, ierr)

call mpi_recv(psi(l,l), i, strided, left, 2,

comm_2d, star, ierr)

endif

217

if (shift_left) then

call mpi_send(psi(2,1), i, strided, left, 3,

comm_2d, ierr)

call mpi_recv(psi(mynx,l), i, strided, right,S,

comm_2d, stat, ierr)

endif

return

end

3.4 Performance Figures on Parallel Platforms

The platforms utilized included the CM5-E (with CMF), the Cray C90 and T90 (with

-O3 auto-tasking), the Cray T3E (with HPF and MPI), the SGI Origin2000 (with pfa,

HPF and MPI), the IBM SP2 (with HPF) and the Sun Global Works (with HPF).

The MPI version of this code employed a 2-D tiling decomposition, and parallel runs

were performed up to 512 processors on the T3E, up to 64 processors on the SGI

Origin, and up to 64 on the Sun clusters.

indent Figure 3 shows the scalability of the code relative to multiples of 4 CPUs.

The T3E with 64 processors achieved an 98 % scaling efficiency relative to 4 CPU's;

we found that poor single PE performance held the overall speed down. For 512

processors, the scaling relative to 32 CPUs was 82 %. The Sun systems scaled well,

with a 95 % efficiency, up to 32 CPUs, but then their scalability declined sharply.

The SGI O2K with 32 processors showed only a 75 % scaling efficiency, but this

improved to 84 % with 56 processors. With the O2K, the beneficial cache effects

were pronounced with increasing CPUs.

Figure 4 depicts the total MFlops output of the various platforms as a function of

CPUS and problem size. For the 2 GB problem size, the O2K efficiency with 64

CPUs is almost 100 % vs. 32 processors, but less than linear for a smaller number.

The MFlop output for 56 processors was 3230. For the O2K, the MFlop output for

the 4 GB problem size was slightly higher than for the 2 GB size with 16 CPUs; the

4 GB problem has not yet been tested for larger number of processors. We note that

the 32 processor MFlop output for the T3E isonly a half of the O2K for 4 GB, but

then it scales well up to 64 CPUs.

The auto-tasking versions were quite efficient even for small program sizes (17 Mb)

and for small number of processors, with the SGI -pfa compiler option (with -02

optimization) giving scalings of 1.9, 3.7, and 15.4 for 2, 4 and 16 CPU's, respectively,

while the Cray T90 -O3 option (with FT90) gave scalings of 3.6 and 6.6 for 4 and 8

processors, respectively.

218

4 References

Bleck,R., S.Dean, M.O'Keefe and A.Sawdey, 1995: A Comparison of Data-Parallel

and Message-Passing Versions of the Miami Isopycnic Coordinate Ocean Model. Par-

allel Computing 21, pp.1695-1720.

Blumberg,A.F. and G.L.Mellor, 1987: A Description of a Three-Dimensional Coastal

Ocean Circulation Model. In 'Three-Dimensional Coastal Ocean Models', Coastal

and Estuarine Sciences, AGU, Washington, D.C., pp.1-16.

Bryan,K., 1969: A numerical method for the study of the circulation of the world

ocean. J. Comput. Phys. 4, p.347.

Bryan,K., 1979: Models of the world ocean circulation. Dynamics of Atmospheres

and Oceans 3, p.327.

Buzbee,B.L.,F.W.Dorr,L.A.George and G.H.Golub, 1971: The direct solution of the

discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8, p.722.

Dukowicz,J.K and R.D.Smith, 1994: Implicit free-surface model for the Bryan- Cox-

Semtner ocean model. J. Geophys. Res. 99, p.7991.

Dukowicz,J.K, R.D.Smith and R.C.Malone, 1993: A reformulation and implementa-

tion of the Bryan-Cox-Semtner ocean model on the connection machine. J. Atmos.

Ocean. Technol. 10, p.195.

Kantha,L.H., 1995: Barotropic Tides in the Global Ocean from a Nonlinear Tidal

Model Assimilating Altimetric Tides, Part I. Model Description and Results. J.

Geophys. Res. 100, pp.25283-25308.

Ma,H., J.McCaffrey and S.Piacsek, 1998: A Parallel Implementation of a Spectral

Element Ocean Model for Simulating Low-Latitude Circulation System. in Parallel

Computational Fluid Dynamics, pp.641-648, ed. D.R.Emerson, A.Ecer, J.Periaux,

N.Satofuka and P.Fox. Elsevier Press.

Madala,R.V. and S.A.Piacsek, 1977: A Model for Baroclinic Oceans. J. Comp. Phys.

23, p.167.

Piacsek,S.A. and R.Allard, 1994: Barotropic Coastal Currents in the Mediterranean.

In Proceedings of the Second International Conference on Air-Sea Interaction and

on Meteorology and Oceanography of the Coastal Zone. American Meteorological

Society, Boston, MA, p.206.

Oberhuber,J.M. and K.Ketelsen, 1995: Parallelization of an OGCM on the CRAY

T3D. Internal report, Deutsches Klimarechenzentrum GmbH, Model Support Group.

Piacsek,S.A. and A.J.Wallcraft, 1993: Initial Experiences with the Connection Ma-

chine at NRL. NRL Technical Note # 73-5089-03.

Schwarztrauber,P.N., 1977: The methods of cyclic reduction, Fourier analysis and

cyclic reduction, and Fourier analysis - for the discrete solution of Poisson's equation

on a rectangle. SIAM Rev. 19, p.490.

219

Smith,R.D., J.K.Dukowicz and R.C.Malone,1992:Parallel oceangeneralcirculation
modeling. Physica D Amsterdam60, p.38.

Wallcraft,A.J., 1991:The Navy LayeredOceanModel UsersGuide. NOARL Report
35, Dec. 1991,21pp. StennisSpaceCenter,MS 39529,USA

Wallcraft,A.J. and D.R.Moore, 1997:The NRL layeredoceanmodel. Parallel Com-
puting 23,pp. 2227-2242.

Webb,D.J., 1995: An ocean model code for array processor computers. Internal

Document No.324, Institute of Oceanographic Sciences, Wormley, U.K.

220

II II

mi L...... L_,,L ::1 ! I

39" _

9" 10" 11" 12" 13" 14"

I L.. l::II I • \Z,

I il

I
,o. i

o _

9" 10" 11" 12" 13" 14" 9 ° 10" 11"

H

I I \ I.i 43"

Nov 16-20 '94 _11
i,ql

41"

4IT

_39"

12" 13" 14"

Figure 1: The barotropic circulation in the Tyrrhenian Sea, for the month November
1994.

221

Figure 2: Seasonal evolution of the barotropic circulation in the NE quadrant of the

Eastern Mediterranean, for 1994.

222

Figure 3: Scalability of the MPI version of the barotropic code relative to 4 CPUs

223

Figure 4: Scalability of the MPI versionof the barotropiccodein terms of MFlops

224

Author: Mohamed Iskandarani

Institute of Marine and Coastal Sciences

Rutgers University

71 Dudley Road

New Brunswick, NJ 08901-8521

mohamed @ahab.rutgers.edu

Parallel Performance of a 3D Spectral Element Ocean Model

In the present work, we investigate the scalability and parallel performance of a new three-dimensional spectral

element ocean model. This new model solves the hydrostatic and Boussinesq primitive equations. It features a

spectral element discretization in all three space dimensions with an unstructured grid in the horizontal, and a

terrain-following sla'uctured discretization in the vertical direction. The computational tasks in the new model

consist of time-integrating the barotropic component of the flow, calculating the three-dimensional tendencies,

solving the implicit system of equations, and updating the diagnostic variables of pressure, density and vertical

velocity. Here, we present our parallel implementation of the above tasks. We also present our analysis of several

numerical experiment in order to identify the break-down of the computational cost among the tasks listed above.

The numerical experiments also serve to illustrate the scalability and performance of the model in a typical basin-
scale oceanic simulation.

225

226

MASSIVELY PARALLEL IMPLEMENTATION OF A

HIGH ORDER DOMAIN DECOMPOSITION

EQUATORIAL OCEAN MODEL

Hong Ma

Brookhaven National Laboratory, Upton, NY 11973

hm@bnl.gov 516 344-4138

Joseph W. McCaffrey Steve Piacsek

Naval Research Laboratory, Stennis Space Center, MS 39529

mccaffrey@nrlssc.navy.mil piacsek@nrlssc.navy.mil

601 688-5053 601 688-5316

Abstract

The present work is about the algorithms and parallel constructs of a spectral ele-

ment equatorial ocean model. It shows that high order domain decomposition ocean

models can be efficiently implemented on massively parallel architectures, such as

the Connection Machine Model CM5. The optimized computational efficiency of the

parallel spectral element ocean model comes not only from the exponential conver-

gence of the numerical solution, but also from the work-intensive, medium-grained,

geometry-based data parallelism. The data parallelism is created to efficiently imple-

ment the spectral element ocean model on the distributed-memory massively parallel

computer, which minimizes communication among processing nodes. Computational

complexity analysis is given for the parallel algorithm of the spectral element ocean

model, and the model's parallel performance on the CM5 is evaluated. Lastly, re-

sults from a simulation of wind-driven circulation in low-latitude Atlantic ocean are

described.

1 Introduction

The spectral element method is a combination of both the spectral and the finite

element methods. The spectral element method is also called the "p-type finite ele-

ment" method, or the h-p type weighted residual method. Like the spectral method,

it uses high order polynomials as trial functions, but like the finite element method,

it decomposes the computational domain into many elements and defines local trial

functions. The hybrid character of the spectral element method enables it to over-

come the shortcomings of both the spectral method and the finite element method but

still retain their advantages. Since the trial functions of the spectral element method

are local, it can handle complex geometry easily. On the other hand, it is still a high

order weighted residual method, so the exponential convergence rate is achieved as

the degree of the polynomials in each element is increased. The main difference be-

tween the spectral element method and the spectral multi-domain method is that the

C O and C 1 boundary conditions at the interface of the elements have to be explicitly

enforced by the spectral multi-domain method. The spectral element method, by con-

trast, uses the variational principle to guarantee C O and C 1 (weakly) continuity at the

227

interface,which resultsin a muchsimplerand morenatural approachthan the nonva-
riational method; therefore,parallel algorithmscanbe convenientlyimplemented. In
the past decadeor so,researchon the spectralelementmethod hasmade important
progressin perfectingthis state-of-the-artnumericalmethod [4,13,14].More recently,
the spectral elementmethod hasshownencouragingpotential in oceanicapplications
[5,6,7,8,9,10,11].

The present work is about the implementation and results of a massivelyparallel,
spectral element, high-resolution,three-dimensionalequatorial oceanmodel which,
in particular, is capableof resolving both the horizontal and the vertical structures
of the low-latitude westernboundary processes.The current versionof the model is
driven solely by wind stressand ignoresthe dynamical effectsof stratification. This
model is designedto study the effectof wind in the formation and variation of impor-
tant meso-to-smallscaleequatorial oceanphenomenon,suchas eddies,low-latitude
westernboundary currents,andvertically alternating equatorialzonal jets. The high
efficiencyof this model is basedon an optimizedcoupling betweenthe numerical al-
gorithm and the computer architecture (algorithm-architecture). In addition to its
exponential convergencerate, the model's performanceis further enhancedby the
spectralelement tensor-productfactorization and spectral elementparallelism.

2 Governing Equations

The model equations include three dimensional time dependent primitive equations

with hydrostatic approximation [1]. The vertical Coriolis force term in the zonal

momentum equation, which is usually omitted in general circulation models, is kept

for the reason that it could become important at the equator.

where

U
du (2_ +)(v-sine- w. cos¢) =
dt r . cos¢'

10 20
1 OP + AHAU + Av-_-_r(r -_r)U

p . r . cos¢ OA
dv wv u

d--_+ -- + (2_ +)u. sine =r T • C08¢

10Pr0¢ 10 0+ A_Av + A_-_r(r2)v
p.

lop
pOr g-- O

1 Ou I O(v. cos¢)
4---

r . cos¢ OA r . cos¢ 0¢

d cO u CO vco CO

= + + +r .cos¢

(1)

(2)

(3)

(4)

(5)

228

1 0 2 1 0. 0.

A = r2cos2-_a_x2+ r2"s¢_(c°s¢_)coo_ o_ (6)

and A is longitude, ¢ latitude, and r radial distance; u, v, and w are the velocity

components in the A, ¢, and r directions, respectively; p is the pressure term. AH

and Av are the eddy viscosity coefficients in the horizontal and vertical directions,

respectively.

For convenience, the original spherical coordinates (A, ¢, r) are mapped onto another

coordinates system (x, y, z), and relationship between these two coordinate systems
is defined as:

x = roco8¢

y = r0¢

z=r-ro

where r0 is the radial distance of the sea level.

(7)
(8)
(9)

No-normal flow, no-slide boundary conditions are applied to all lateral boundaries

and to the ocean floor. At the sea-surface, we assume the rigid-lid boundary condi-

tion. The present model is solely driven by wind stress:

A Oupo v_l_=0 = _x (10)

A Ov
po V_zzl==0 ='ry (11)

where _-x and ry are surface wind stress components.

3 Spectral Element Discretization and Solvers

The basis sets used in the present work are as follows:

¢_,,_,(_, 7/, _) - h,(_)hm(71)h,(_) l,m,n E {0, 1, ...g} 3 (12)

where hi(s) are the Gauss-Lobatto-Legendre polynomials.

If we use a single subscript, q (q E {1,2,..., (N + 1)3}), the mapping between a

macroelement, _e, and its phase domain, _2e, can be expressed as:

(13)x = x.¢_(¢)

Where x E _e and ¢ E _e.

Let solution u at time nat on each subdomain _e be expanded as:

(14)

229

where f_(t) is the value of function f at the collocation point xq E f_e at time t.

By using the same variational procedures as those in [6,7], i.e., all the integrations

are evaluated by the Gauss-Lobatto quadrature scheme, which is an exact formula for

(2N-1) th order polynomials, the spatially discretized formulae for the primitive equa-

tions can be obtained. In particular, the isoparametric spectral element discretization

formulae for the horizontal momentum equations of the present primitive equation

model are virtually identical as those in [6, 7]. One advantage of using the Gauss-

Lobatto-Legendre polynomials as basis functions is that we only have to deal with

one set of grid points for both interpolating the solutions and evaluating the integrals.

We choose the isoparametric spectral element discretization scheme [6, 7], namely,

using nonstaggered grids, for the present numerical model. The nonstaggered for-

mulation avoids spurious pressure modes as staggered schemes do, and, at the same

time, has the advantage that pressure is continuous across boundaries of the spectral

elements. Only one set grids is required for both interpolation and quadrature, hence

simplifying operations.

The discretized incompressibility condition and the hydrostatic condition have the

following format:

[DZ][w]= [g]

where [D z] is the matrix generated by applying variational procedures to the vertical

differentiation operator; [w] is the vector representing the unknown at the collocation

points, and [g] is a vector whose components are known.

To obtain the solution for the vertical velocity, w, we need to solve a matrix problem

of the above format. It can be done by using either matrix iteration methods or

direct matrix inversion. The latter is especially efficient when the vertical grains of

the spectral element mesh are parallel to the z axis, since the dimension of the matrix
to be inverted is the same as the number of levels in the vertical direction.

The time marching scheme for the hyperbolic equations of the present model is the

3 rd order Adams-Bashforth scheme. This scheme has proven to be efficient in high

Reynolds number, high resolution simulations, especially in a massively parallel com-

puting environment [7]. In fact, except in the upper range of eddy viscosity (diffusion)

for oceanic applications, it is likely to be more efficient to use a fully-explicit scheme

because it results in diagonal stiffness matrices for the hyperbolic equations.

A preconditioned conjugate gradient iterative solver is used in the present model

to solve the elliptic equation [A][x] = [b] associated with the pressure term, which has

the following algorithm

[x0] = initial guess; It0] = [b]- [A][x0]; [q0] = [P-1][r0]; [So] = [q0];

am = [rrn]" [Sm]/[q,n]" {[Al[qm]}; [xm+l] = [xm] + am[qm];

[r,,_+l] = [r,_] - a,n[A][qm]; [sin+l] = [P-1][r,_+l];

230

where P is the Jacobi preconditioner.

(15)

Evaluation of the matrix-vector product, [A][u], constitutes the operation count kernel

of the spectral element iteration solver. Inherited from the properties of the spectral

method, the number of operations for the matrix-vector product [A][u] in the present

spectral element model would be proportional to KN 2d (d is the number of spatial

dimensions) if a simple-minded algorithm were applied. Although the problem is less

severe for the spectral element method than it is for the spectral method, it still hin-

ders the efficiency of the 3-D model. Fortunately, the partial summation algorithm,

which was first proposed by Orszag (1980) for the spectral method, can drastically

reduce the cost of solving the matrix-vector product problem.

Assume [A] is the global stiffness matrix for the laplacian operator. The straight-

forward spectral element formulation gives the tensor product form

K N N N

[A][u](q,r,s) = _-_'_ _ _ Ak(q,r,s,l,m,n)uk(l,m,n)
k= l l=0 rn=O n=O

(q, e {0,...Y}3) (16)

where [A][u](q, r, s) are elements of [d][u]; Ak(q, r, s, l, m, n) are elements of the local

stiffness matrix [A k] and _' is the direct stiffness matrix summation. The evaluation

of [A][u], therefore, requires O(KN 6) operations.

The present work uses the partial summation algorithm at the elemental level to

evaluate [A][u] more efficiently. Ak(q, r, s,l, m, n) can be evaluated in the form of

Ak(q,r,s,l,m,n) = HX(l,q)HU(m,r)HZ(n,s) (17)

where HP(i, j) are functions of i and j.

Therefore, the auxiliary matrices [B] and [C] can be constructed in the following

way:

N

B(l,m,s) = _ u*(l,m,n)H'(n,s) (18)
nmO

N

C(l,r,s) = _ S(l,m,s)HY(m,r) (19)
rn=0

Then [A k] [u k] can be evaluated by

N

[Ak][uk](q,r,s) = _ C(l,r,s)HX(l,q)
/=0

q,r, sE {0, 1, ..., N} 3 (20)

231

Now, the total operation count in computing B, C, and [A][u] is O(KN4); this is

N 2 times less expensive than using the straightforward algorithm to evaluate the

matrix-vector product.

The greatly reduced operation count resulting from the partial summation algorithm

is not the only advantage of the spectral element model in evaluating the matrix-

vector product; it also has a much smaller storage requirement. In fact, the storage

required to evaluate [A][u] for a 3-D model would be O(KN _) instead of O(K_N 6)

because the stiffness matrix elements are "computed on the fly" rather than stored

in the memory.

4 Parallel Implementation

The spectral element primitive equation ocean model is parallelized to run efficiently
on the Connection Machine Model CM5. In order to avoid unnecessary communica-

tion among processing nodes, which is of first order importance in a parallel imple-

mentation on a distributed memory, massively parallel architecture, a data mapping

scheme was created so that all the information related to a given spectral element

is collected in the memory of a single processor. Prior to assembling the global

stiffness-matrices, only data related to a given spectral element are used to create

the local matrices of that spectral element. At this stage, all computations are car-

ried out at the local level, therefore, there is no communication among neighboring

processors while assembling local (elemental) matrices. On the Connection Machine

model CM-5, we pursue data parallelism by designing the layout of the arrays of the

spectral element model in such a way that the axes along the number of elements

are assigned as parallel dimensions, and those along intra-element degrees of freedom

as serial ones. is no communication among neighboring processors during elemental

level computations, and they are performed concurrently across all virtual processors.

The computational kernel of solving the discretized primitive equations model is cal-

culating matrix-vector products. We split the procedure of calculating matrix-vector

products into two steps, each of which admits concurrency. At the first step, the

matrix-vector products are carried out at the elemental level with, for example, the

elemental Laplacian and mass matrices:

(N+I) d

rk(i)= _ Ak(i,q)uk(q) i e {1,2,...,(N + l)d}, ke{1,2,...,K}(21)
q=l

sk(i) = B_(i)uk(i) i e {1,2,...,(N+ 1)d}, k • {1, 2, ..., K} (22)

After applying tensor-product factorization, the computational complexities to evalu-

ate (21) and (22) would be C1KNd+I/Q and C2KNd/Q, respectively, where Q is the

number of physical processors involved. On the Connection Machine systems, parallel

data structure allows (22) to be performed in an array operation, which means that

232

thousandsof simultaneousmultiplications are made acrossall the array elements.
Hence,C2 is a small number. Consequently, diagonal preconditioning is especially

efficient in the data parallel environment: it does not require direct stiffness sum-

mation, and only local computation is involved. Iteration counts can be reduced by

twenty to thirty percent with about a one percent increase in cost. The processing

nodes on the CM-5 model are equipped with powerful vector-processing units that

can further reduce the cost of elemental level computation. These vector-processing

units are most efficient when the order of the spectral elements is high.

The second step is to carry out direct stiffness summation, _g=l ', in which contribu-

tions from local nodes that share the same physical coordinates are first accumulated,

and then assigned back to those local nodes. In a serial spectral element model, this

procedure can be accomplished by using global and local index systems, and .is au-

tomatically done as the matrix computation is made for each spectral element. In

the parallel spectral element model, however, it is more efficient to use a separate

step for the direct stiffness summation. Since each spectral element has at least one

edge (two-dimensional case) or one surface (three-dimensional case) that is shared by a

neighboring element, the direct stiffness summation can be carried out simultaneously

along these edges or surfaces enabling structured message exchange, i.e., edge-based

message exchange for two-dimensional problems, and surface-based message exchange

for three-dimensional ones. Since this kind of information exchange takes place along

the linkages of the "macro-element-skeleton", it can be easily synchronized for all

elements in the entire domain. The work per processor that is required in this proce-

dure is C3dKNd-1/Q. The structured message exchange mostly avoids explicit short

messages, and it considerably improves the parallel efficiency of the spectral element
model.

With parallel prefix of the CM Fortran, MATMUL and SUM, an inner product can

be executed completely in parallel. Its computational complexity is C4KNd/Q. Due

to the high level of concurrency afforded by the parallel prefixes, C4 is a small number.

In high Reynolds number case, the discretized horizontal momentum equations only

requires a direct method to solve. The computation kernel here is the evaluation

of the advection term where concurrency can be achieved at different levels of the

computation. We first evaluate the shears of velocities at all nodal points

l • {1, 2, ..., (N + 1)d}, m,j • {1,2,...,d} 2, e • {1, 2, ..., K} (23)

This operation is executed concurrently across all virtual processors. With the partial

summation method, the computational complexity for (23) is CsK(N+ 1)d+I/Q. The
discretized advection term also can be written as

233

ocm,jw,q) = Z m,, Oz5

;,q • {1,2,...,(N + 1)d}2, j,m • {1,...,d} 2 (24)

Therefore, once the shears of velocities are obtained, the remaining operation to

evaluate the advection terms is the same as that of (22) Hence, the total computa-

tional complexity of (24) is C2K(N + 1)d/Q + CsK(N + 1)d+I/Q.

As spectral elements are of high-order, most of the costly operations are at the el-

emental level, and they are executed concurrently. The spectral granularity at the

elemental level can take full advantage of the computing power that the latest process-

ing units provide. The structured message exchange, combined with parallel prefix,

makes inter-element communication a lower-order rather than a highe-order cost,

compared to that of elemental level computation. This communication cost should

be much smaller than that of the h-type finite element model, partially because many

fewer redundant nodel values, shared by more than one element, have to be stored.

50 -- 1.0

0 ,,, I,,,,I_ ,,,I,,,,I ,,,, I,,,,I,,,,I
0 10 20 30 40 50 60 70
numberof spectralelements(x512)

4O
,-z

"o

,_ 30
oz.
¢,o

-_ 20
._>

¢D

10

¢,_
¢.-

:_ 0.9
:1::
110

.>_.

g 0.8

0.7
0 10 20 30 40 50 60 70
numberofspectralelements(x512)

Figure 1. Parallel performance measure on a CM5 partition with 256 processors.

N=6.

In the parallel implementation of the present spectral element model on the CM5, the

number of virtual processors always equals to the number of spectral elements. There-

fore, we can use "equivalent speedup"= (K. T1)/TK and "equivalent efficiency"=

T1/TK to measure the parallel performance of the spectral element primitive equa-

tion model, where TK is the CM5 cpu time per time step with K spectral elements.

Since on a serial computer, the computational cost of the spectral element primitive

ocean model is proportional to the number of spectral elements, K • 7"1 is roughly

how much time it would take to execute one time step if the CM5 had only one

processor. Figure 1 shows that with a fixed number of physical processors, the per-

formance of the spectral element primitive equation model scales very well until the

234

number of spectral elements becomes so large that the memory in the CM5 partition

is saturated. The excellent scalability of the model recovers when the size of the CM5

partition is increased.

5 Results From An Equatorial Atlantic Experiment

In this numerical experiment, the model is driven solely by surface wind stress, and

the model ocean is an idealized rectangular basin. It is designed to study the effect of

wind in the formation and variation of important equatorial ocean phenomena which

are meso-scale at least in one spatial dimension, such as low-latitude western bound-

ary currents, eddies, and vertically/meridionally alternating low-latitude zonal jets.

The assigned values for the horizontal and vertical eddy viscosity coefficients for the

current simulation are 2.4.106 cm2s -1 and 30 cm2s -_, respectively. Since the present

spectral element model has adequate resolution to resolve meso-scale eddies, we were

able to use a horizontal eddy viscosity coefficient which is an order of magnitude

smaller than what was typically used in OGCMs to allow the meso-scale processes to

be modeled more realistically.

The lengths of the edges of the macro spectral elements which were used to discretize

the present model measured 3.5 ° in the meridional direction, and 90 m vertically. A

strip of refined spectral elements is embedded in the region west of 34 ° W where the

zonal length of the macro spectral elements measured 1.5°; elsewhere it measured

6°. This discretization strategy is based on the fact that short equatorial waves are

confined near to the western boundary region. The seventh order Gauss-Lobatto-

Legendre polynomials were used to construct the basis functions within each macro

spectral elements. Based on the role-of-thumb that 3.5 interpolation points per wave-

length would be required for the spectral element model to resolve a wave-like solution

with O(1%) numerical error, the present spectral element ocean model configuration

can adequately resolve waves of wave-lengths 150 km in the meridional direction, 50

m in the vertical direction, and 70 km in the zonal direction (300 km if east of 34 ° W).

Figures 2a and 3a show that beneath the surface layer, there are bands of west-

ward currents centered around 10°N and 9°S, which supply the equatorward western

boundary undercurrents. Compared with the observed structure of the intermediate

layer currents [2], these model subsurface westward currents correspond to the North

and the South Equatorial Currents (NEC and SEC), respectively. In the winter sea-

son, the model North Equatorial Undercurrent (NEUC) at 3°N is fed from the north

by the southward western boundary undercurrent, supplied by the NEC. In summer

season, the southward western boundary undercurrent does not reach as far south as

in winter, and it veers into the North Equatorial Countercurrent (NECC) centered

at 7°N. In the upper part of the undercurrent layer (,,_ 100 m deep), in all seasons,

the SEC feeds the model North Brazil Current (NBC) which in turn feeds the South

Equatorial Undercurrent (SEUC) near 3°S and the EUC. The model NBC also feeds

the NEUC in summer, in contrast to the northerly supply of the NEUC in winter.

An interesting phenomenon is that while the model NEUC is a permanent current

235

feature, its supply in the westernboundaryregionalternatesbetweena southerly and
northerly onedependingon the season.From Figures2aand3a, wenote that outside
the western boundary region, the EUC providesinput to the NEUC and the SEUC
through polewardmeridionalflowsonboth of its sides.The presentmodel reproduces
the retroflection of the NBC near 4°N in summer. In the upper undercurrent layer,
the NBC curvesback to the NEUC (Figure 3a).

5 cm/s

12N

10

8

6

4

2

Equator

2

4

6

8

10

12$

4_W 40 35 30 2_

(a)

15 cm/$

12N

10

8

6

4

2

Equator

2

4

6

:::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::::

!_EEEEEEEEEEEEEEEEEEEEEE_E_{_

iIiiiiiiiiiiiiiiiiiiiiiiii!ilili
i i iiii!iiiiiiiiiii!iiiiiiii i a!,

Figure 2. Model currents in January. (a) 100 m. (b) 200 m.

15 cm/s 15 cm/s

12N

10

8

6

4

2

Equator

2

4

6

8

10

12S

4_

iiiiiiiiiiiiii!!iiiiiiiiiiiiiiil
:::::::::::::::::::::::::::::::::

i !!iiii!iiii!!iiii!!!iii

4O 35 3O 25W

(a)

12N

10

8

6

4

2

Equator

2

4

6

,8

10

12S

................ i;_;

...... ::::::::::::::::::::::::::

40 35 30 25W

(b)

Figure 3. Model currents in July. (a) 100 m. (b) 200 m.

236

In the lower undercurrent layer (,-_200 m), the eastwardmodel NEUC and SEUC
diminish, and the modelEquatorial Undercurrent (EUC) is now flankedby two west-
ward off-equatorialundercurrentslocated at 1.5°Nand at 1.5°S(Figures2b and 3b).
In winter, the westwardoff-equatorial current north of the equator diminisheseast
of 35°W (Figure 2b). Also, in summerat this vertical level, the equatorward(south-
ward) off-shorecountercurrent,which is part of the NBC retroflection, extendsall the
way to the equatorwhereit joins the EUC. At 100m depth, however,this countercur-
rent mergesinstead with the NEUC (Figure 3a). The modelNBC doesnot retroflect
in winter. In the lower part of the upper-layer (below200 m), however,there is an
offshoreanticyclonic gyre at the samelatitude wherethe NBC retroflects in summer
(Figure 2b). The temporal and spatial features of the model upper ocean currents

described in this section closely resemble those of their counterparts observed in the

tropical Atlantic, which are summarized in [2].

It is interesting that the branching of the model NBC is strongly layered. In the

near-surface layer, the NBC feeds the NECC between 6°N and 9°N in winter, and

between 4°N and 7°N in summer. Below the near-surface layer, the model NBC orig-

inates south of the equator. In the layer between 60 m and 80 m depth, the NBC

branches off mostly to the SEUC near 4°S ; in the layer between 150 m and 250 m,

it branches mostly to the EUC; and in the intermediate layer between these two, it

supplies both the SEUC and the EUC. In summer season, at depths below 400 m,
the model NBC does not branch off to eastward interior flows until it reaches near

4°N where it retroflects into an equatorward countercurrent which eventually joins

the model EUC. This layered separation pattern of the NBC was also reported in

water mass studies, e.g.,[3,12].

The fact that the present model reproduced all major features of the currents in

the upper couple hundred meters of the tropical Atlantic Ocean suggests that the
wind effect here is the deterministic mechanism of current formation an d variations.

More details of the present numerical simulation are described in [11].

6 Conclusions

The present work shows that high order domain decomposition ocean models can be

efficiently implemented on massively parallel architectures, such as the Connection

Machine Model CM5. The optimized computational efficiency of the parallel spectral

element ocean model comes not only from the exponential convergence of the nu-

merical solution, but also from the work-intensive, medium-grained, geometry-based

data parallelism. The data parallelism is created to efficiently implement the spectral

element ocean model on the distributed-memory massively parallel computer, which

minimizes communication among processing nodes and results in a highly scalable

performance. The same advantage of the nonstaggered grid formulation was found in

the present parallel, three dimensional, spectral element ocean model as in the earlier

spectral element shallow water equation model [6,7].

237

Acknowledgement

This work was supported in part by DoD CommonHigh PerformanceComputing
SoftwareSupport Initiative (CHSSI) and by the U. S. Department of Energy under
Contract No. DE-AC02-98CH10886.

References

1. Bryan, K., Mon. Wea. Rev., 97 (1969)806.
2. Bub, F. L. and W. S. Brown, J. Geophys. Res., 101 (1996) 11903.

3. Cochrane, J. D., F. J. Kelley, and C. R. Olling, J. Phys. Oceanogr., 9 (1979) 724.

4. Fischer, P. F. and A. T. Patera, J. Comput. Phys., 92 (1991) 380.

5. Ma, H., J. of Marine Research, 50 (1992) 567.

6. , J. Comput. Phys., 109 (1993) 133.

7., Brookhaven National Laboratory Technical Report (1994) BNL-61103.

8. , in Parallel Computational Fluid Dynamics: Implementations and Results

Using Parallel Computers (A. Ecer, J. Periaux, N. Satofuka and S. Taylor, eds.) 239.

Elsevier, North-Holland, 1996.

9., J. Mar. Res., 54 (1996) 35.

I0. Ma, H., J. McCaffrey, and S. Piascek, Proceedings of Parallel CFD '97 (1997)641.

Manchester, UK.

11. (1998), submitted to J. Mar. Res..

12. Metcalf, W., J. Mar. Res., 26 (1968) 232.

13. Patera, A. T., J. Comput. Phys., 54 (1984) 468.

14. Ronquist, E. M., Optimal Spectral Element Methods for the Unsteady Three

Dimensional Navier-Stokes Equations, Ph.D. Thesis, The Massachusetts Institute of

Technology (1988).

238

The Los Alamos Coupled Climate Model

Philip W. Jones

Theoretical Division, Los Alamos National Laboratory
T-3 MS B216, Los Alamos, NM 87545

pwjones@lanl.gov, Phone: +1 505 667-6387, FAX: +1 505 665-5926
Robert C. Malone

Advanced Computing Laboratory, Los Alamos National Laboratory
MS B287, Los Alamos, NM 87545

rcm@lanl.gov, Phone: +1 505 667-5925, FAX: +1 505 665-4939
C. Aaron Lal

Earth and Environmental Sciences Division, Los Alamos National Laboratory
MS B401, LOs Alamos, NM 87545

cal@lanl.gov, Phone: +1 505 665-6635, FAX: +1 505 665-3415

Abstract

A climate model which couples ocean, sea ice, atmosphere and land
components is described. The component models are run as autonomous
processes coupled to a flux coupler through a flexible communications

library. Performance considerations of the model are examined, particularly
for running the model on distributed-shared-memory machine architectures.

I. Introduction

To gain a full understanding of the Earth's climate system, it is necessary to understand
physical processes in the ocean, atmosphere, land and sea ice. In addition, interactions

between components are very important and models which couple all of the components
into a single coupled climate model are required. A variety of such models have been

developed using quite different approaches. For example, the Geophysical Fluid Dynamics
Laboratory (GFDL) coupled model [1] is a single integrated model which is run at very
coarse resolution for many thousands of years. At the other end of the spectrum is the
Climate System Model (CSM) [2] at the National Center for Atmospheric Research
(NCAR) which couples different models running autonomously at moderate resolution.
Our ultimate goal is to produce a coupled model which can be used for century-scale
climate simulations at resolutions that will allow us to resolve eddy processes which are
important in ocean dynamics.

or high-reso!ution climate simulations, it is important to develop a coupled climate model
at runs effic.lenfly, on advanced _mputer architectures. There are two very similar efforts
waros runmng high-resolution climate models on parallel architectures. One of these is

the Parallel Climate Model (PCM) at NCAR led by Warren Washington [3]. In this model,
each component model is a parallel model, but all of the components are combined into a
single executable and run serially in a single partition of a parallel machine. We have

instead used an approach very similar to the NCAR CSM model, using a set of
autonomous component models running as separate executables and communicating using
message-passing through a flux coupler. In the next section, we will describe the model in

detail. The following sections will examine aspects of the model which affect
computational performance and describe future improvements in the model.

239

II. Model Description

The Los Alamos Coupled Model utilizes the framework of the NCAR CSM model in which
ocean, atmosphere, land and sea ice models are run as separate autonomous executables
which communicate through another executable called a flux coupler. We are using the
NCAR Flux Coupler [4] with a few modifications which will be described later. The flux
coupler keeps all the models synchronized and computes many of the interface fluxes
between models. Most component models send their state variables at the
atmosphere/ocean interface to the coupler and the coupler computes fluxes based on those
state variables; exceptions to this rule will be discussed below. Fluxes computed by the
coupler are computed on the finest component model grid (usually the ocean grid),
requiring the flux coupler to remap fields from one grid to another. One of the changes we
have made to the CSM flux coupler is to include a very general conservative remapping
scheme developed at Los Alamos which will perform first and second-order conservative
remappings for any grid on a sphere [5]. Another issue resulting from the use of different
grids is the consistency of land masks. Because the flux coupler computes most fluxes on
the ocean grid, the ocean model serves as the "master" grid and all other grids must
conform to the land/ocean mask on that grid. In some cases, land mask discrepancies
result in the land model computing land values unnecessarily over ocean points and the

coupler treats this correctly by simply multiplying that value by a land fraction of zero.
However, problems occur when the ocean model dictates that some fraction of an
atmosphere grid cell should be land, but the land model treats the cell as an ocean point.
This can occur on continental margins or for inland seas that the ocean model ignores.
Each of these cases require altering the land-model mask to compute land values at these
points.

The flux coupler and component models communicate through the Model Coupling Library

(MCL) [6] developed by John Dennis at NCAR. This library provides a flexible message-
passing fabric, allowing the user to choose the communication protocol and providing a
relatively robust error detection mechanism so models can shut down gracefully if a
particular component stops prematurely.

The ocean model is the Los Alamos Parallel Ocean Program (POP) developed by Smith,
Dukowicz and Malone [7] based on earlier models by Bryan [8], Cox [9], Semtner [10]
and Chervin [11]. The POP model was written specifically for parallel machines and

supports a variety of programming models, including message-passing, shared-memory
and data-parallel. The model integrates the primitive equations using a B-grid for the
horizontal discretization and depth (z) as the vertical coordinate. The primitive equations
are split into baroclinic and barotropic modes and the baroelinic modes are advanced in time
using a leap-frog scheme. The barotropic equations have been formulated to solve for the
surface pressure and the equations with a free-surface boundary are solved implicitly using
a preconditioned conjugate gradient solver [12]. For the simulations described here, the
Gent-McWilliams parametedzation [13] for mixing along isopyenal surfaces is used as well

as the k-profile parameterization (KPP) [14] for vertical and mixed-layer mixing. The POP
model also uses a displaced-pole grid [15] (see Figure 1) which allows simulation of the
arctic regions without the use of filtering or restrictive time steps. This is very useful in
coupled climate simulations where arctic processes are extremely important. Our initial
ocean resolution is a global grid at an average horizontal resolution of 2/3 degree and 32
vertical levels with non-uniform spacing (finer vertical resolution near the surface). Due to
the relatively slow timescales in the ocean, the ocean model communicates with the flux

240

coupler only once per day. Sea surface temperature, surface salinity, two velocity
components and the surface slope are sent to the coupler while the coupler sends to the
ocean the wind or ice stress, net shortwave radiation flux, total non-shortwave heat flux

(longwave, sensible and latent heat) and total water flux (precipitation, evaporation, melting
and river runoff).

Figure 1. The POP displaced-pole grid with the pole shifted into the North American
continent.

Sea ice is simulated by the CICE model, a new ice model developed by Hunke and
Dukowicz at Los Alamos. The CICE model utilizes an elastic-viscous-plastic ice rheology
[16] for the ice dynamics which allows a fully-explicit formulation ideal for parallel
computers. The ice thermodynamics is computed using a three,layer model of Semtner
[17,18]. Currently, this model uses a directive-based loop-level parallelism which can be
used on shared-memory machines like the SGI/Cray Origin 2000. Modifications for a
message-passing version are in progress. The CICE model uses the same generalized grid
that the POP ocean model uses and in the model presented here is always run on the same
ocean grid, eliminating the need for remapping between ice and ocean. Unlike the other
components, the CICE model computes the surface temperature, latent heat, sensible heat
and upward longwave flux self-consistently using an iterative method. The ice also

241

respondsrelatively rapidly to thewindsfrom theatmosphere and the ice model therefore
communicates with the flux coupler every two hours. The ice model sends to the coupler
the ice fraction, surface temperature, four albedo components, stress at the ice/ocean
interface, heat flux due to melting/freezing, total water flux at the ice/ocean interface,
shortwave radiation that penetrates through the ice, latent heat, sensible heat, upward

longwave and evaporative water flux. From the coupler, the ice model receives sea surface
temperature, salinity, two ocean velocity components, ocean surface slope, conductive heat
flux from ocean, height of first atmospheric model level, atmospheric wind speed,

atmospheric potential temperature, specific humidity, net shortwave radiation flux,
downward longwave radiation flux, wind stress and precipitation water flux. Because
CICE computes many fluxes internally and exists at the interface between atmosphere and
ocean, it requires exchanging a large number of fields with the flux coupler.

For the work presented here, the atmosphere and land models are combined in the NCAR

Community Climate Model (CCM3) [19]. Recently, the land model has been separated
from the atmosphere model into the NCAR Land Surface Model (LSM). The CCM3 model
is a global spectral model for the atmosphere which is too detailed to describe fully here.
The land surface model is a comprehensive physical model of energy, momentum, water
and CO2 exchange between the atmosphere and land with varying soil and vegetation types

[20]. The CCM3 model is typically run at T42 resolution (approximately 2.8 degrees) in
the horizontal and 18 levels in the vertical. Currently, CCM3 uses directive-based loop-
level parallelism with a one-dimensional decomposition in latitude (the outer latitude loop is
parallelized). A full message-passing version with two-dimensional decomposition is in
progress through a collaboration between NCAR and Oak Ridge National Laboratory. The

atmosphere has the shortest timescale variability (in the surface fields) of any model and
must therefore communicate the most frequently. Initially, CCM3 communicated every

model step (20 minutes) but this frequency was reduced to one hour for performance
reasons (see next section). The atmosphere sends to the coupler the height of the first
model level, two wind components, potential temperature, specific humidity, density, net
shortwave radiation, downward longwave radiation, and precipitation water flux. The

atmosphere receives four albedo components, surface temperature at every point, wind
stress, latent heat flux, sensible heat flux, upward longwave heat flux and evaporative
water flux. The land model, like the ice model, computes many fluxes internally and

passes to the flux coupler the four albedo components over land, land surface temperature,
latent heat flux, sensible heat flux, upward longwave heat flux and evaporative water flux
over land points.

As mentioned above, the flux coupler computes many of the interface fluxes, including the
wind stress, latent, sensible, upward longwave heat flux and evaporative water flux over
ocean points. It also computes albedoes over the ocean. Because the land model currently
has no river runoff model, we have added a simple runoff scheme into the coupler. This
scheme computes the excess evaporation over precipitation on ocean grid points,
representing the net excess of precipitation over land area. This excess is distributed at
river outlets with a weighting based on annual-average river output. Lastly, the coupler
contains routines for averaging the various fields before sending the fields to the
appropriate model. The averaging can be in space when combining land/ocean values
before sending to the atmosphere (based on the fractional area of the cell covered by land,
ocean and ice). Averaging in time occurs for models which communicate less frequently;
the ocean for example is sent the average fluxes over the previous day.

242

III. Performance Issues

Obviously, the primary factor that affects performance of the coupled model is the

performance of each individual component. However, running each component as separate
executables offers another level of parallelism which can be exploited. Inter-model
parallelism is not immune to factors which interfere with efficient parallelism in individual
component models. One impediment to parallelism occurs when the interaction between
models results in serial dependencies. Efficient parallelism is also inhibited when the
components are not well load-balanced, resulting in processors assigned to a component
remaining idle because that component must wait for another component to finish.

Serial dependencies result from the choices of which model computes fluxes and how often
those fluxes must be exchanged. For example, the flux coupler is computing the upward

longwave, latent and sensible heat fluxes. If the atmosphere is to respond immediately to
these fluxes, it must communicate every time step (20 minutes for CCM3 at T42
resolution). However, this means that the coupler and the atmosphere model are running

serially because each must wait until the other finishes before continuing. If the coupler is
running sufficiently fast on very few processors this is not a problem, but we have found
that in practice this would require allocating too many processors to the coupler which
would then sit idle while waiting for the atmosphere. Instead, the atmosphere model can
communicate less frequently (once per hour) and can integrate for three time steps before
having to stop and exchange messages with the coupler. The serial interaction with the
coupler is then a much smaller fraction of the total nmning time.

The second reason for serial dependencies is that after a model receives a message from the
coupler, it may need to perform some calculations before sending a message back to the
coupler. The coupler may be waiting for this information before it can continue so it is
important to minimize the amount of work between a receive and a send in each component
model. In some models, the work between messages can be eliminated by using variables
from a previous time level. For example, the ocean communicates with the coupler once
per day, receiving fluxes from the coupler that have been averaged over the previous day
and sending back to the flux coupler ocean state variables from the previous time step. In
this case, no work needs to be performed since the necessary information is readily
available and can be sent immediately after a receive. This is acceptable for the ocean model
because the ocean responds slowly in comparison to the other models. Unlike the ocean
model, the ice model responds more quickly to fluxes like the wind stress. In addition, the
ice model computes surface latent and sensible heat fluxes internally which are needed
immediately by the atmosphere model. When the CICE model was first coupled with the
atmosphere and ocean, the model was written in such a way that it would receive
information from the coupler and advance an entire time step before sending the necessary
flux information back to the coupler. However, the fluxes required were actuaUy computed
fu'st in the relatively fast thermodynamics phase, so we could reduce the serial dependence
greatly by sending the fluxes back immediately after the thermodynamics phase and the ice
dynamics could then proceed in parallel with the other components.

In order to use computational resources most efficiently, it is necessary to load balance the
component models so that processors associated with a component are not wasted idly
waiting for another component to finish before they can synchronize. The load balancing
process is made easier if the scaling of each model is predictable and if the model is flexible
enough to run on any configuration of processors. Figure 2 shows the scaling of each

243

component model running on a Silicon Graphics/Cray Research Origin 2000. The results
indicate that directive-based parallelism for multi-threading at the loop level does not appear
to scale well above 16 processors. Because we would like to use as many processors as
possible to integrate in the shortest time, this poor scaling will create problems. Currently,
for a load-balanced run, we would require 32 processors for the atmosphere, 16 processors

for the ocean and four processors for CICE. Trying to run at higher processor counts
would not improve the total run time because CCM3 would not run as efficiently at 64
processors. The current version of CCM3 also will not scale beyond 64 processors at T42
resolution because the parallelization only occurs over the latitude loop. As mentioned
above, a version of CCM3 with message-passing and a two-dimensional decomposition is

in progress and this should allow us to run much more efficiently at higher processor
numbers. Another example of poor scaling in Figure 2 is the conservative remapping

scheme. One portion of this scheme which accumulates partial sums scales very poorly
with processor number. This non-scaling part of the routine will also dominate as we
move toward higher resolution models, so while the run time is currently relatively small
for this combination of models, the remappings could create problems at higher
resolutions. We are currently investigating more efficient methods for implementing these
remappings.

a

"O
O

t_

O
O.

A

O

V

,_E

1000

1130

10

. , , !

G---e CCM3

[3----E] POP

e---_ CICE .

1 i I i i i i i i ! i J k ° = , . •

1 10 100

Number of Processors

Figure 2. CPU time per model day for component models as a function of the number or

processors. CCM3 is at T42 resolution while POP and CICE are at 2/3 degree resolution.
The remapping times are the time spent in the coupler remapping fields from one grid to
another.

244

As mentionedabove,we haveusedtheOrigin 2000computerfor our simulations. The

Origin 2000 is a distributed-shared-memory machine, meaning it has a cache-coherent
globally-addressible memory which is physically distributed across processors. This
architecture has the advantage that it supports a variety of programming models so that we

can mix message-passing codes with multi-threaded codes. We have taken full advantage
of this feature of the architecture. The current implementation of distributed-shared-memory

also has some disadvantages. Because all processors can access memory across the

machine, the operating system currently can not ensure that processors and memory are
truly dedicated to a particular model. This can create problems if one of the threads from
the atmosphere, ice or coupler begins to use the memory of a processor running another
component model, resulting in a substantial degradation in performance for both processes
involved. In practice, such a situation can be avoided if all users of a machine give the
batch scheduler the proper resource parameters (number of processors and memory size) so
that the scheduler does not oversubscribe the resources of the machine. It is also important

to know that the system spawns an extra process for parallel jobs so that when running a

32-processor MPI job, the user should ask for 33 processors.

Our system at Los Alamos is actually a cluster of Origin 2000 machines. The simulations
we have run so far have only utilized single boxes of up to 128 processors. The MCL
communications library is flexible enough to run each component on a separate box. The
batch scheduler also can allocate processors across boxes in any particular configuration,

but currently cannot allocate particular executables and their job scripts to run
simultaneously on the properly-sized set of processors. This capability will be necessary
as we move to very high resolutions.

IV. Conclusions

We have found the NCAR Flux Coupler concept to be a very flexible and efficient way for

us to quickly couple the POP ocean model, the CICE ice model and the CCM3 atmosphere
and land model. We continue to improve the performance of each of the components in
order to increase the efficiency of the model. In particular, we are working to improve the

remappings within the flux coupler in order to reduce the amount of time spent in that
component. Additionally, we are working on improvements to the POP model that could
substantially improve the performance on cache-based microprocessor and allow us to run

at higher resolutions.

The flux coupler concept may present problems for other model combinations or computer
architectures. For example, in the coupled model described above, the CICE component
requires the upward longwave, latent and sensible heats to be computed implicitly and self-
consistently with the surface temperature. If we were to couple POP and CICE to an
atmosphere model which also required these fluxes to be computed internally in the
atmosphere model, one of the models would have to be altered to accept fluxes computed
externally. Computer architecture flexibility is also required if all the components use
different programming paradigms. Distributed-shared-memory machines are ideally suited
as they can be programmed using message-passing, multi-threading or shared-memory

paradigms. Other architectures have operating systems which do not allow separate
executables to run simultaneously in the same partition.

245

Acknowlegments. This work of course would not be possible without the help of the
developers of each component model, including Elizabeth Hunke, Mat Maltrud, Rick
Smith, John Dukowicz, John Dennis, Dave Williamson, and Jim Hack. The work was

performed using facilities of the Advanced Computing Laboratory and was supported by
the Department of Energy's Climate Change Prediction Program.

References

1. R.J. Stouffer, S. Manabe and K. Bryan, Interhemisphefic asymmetry in climate
response to a gradual increase of atmospheric CO2, Nature, 342, 660 (1989).

2. B.A. Boville and P.R. Gent, The NCAR Climate System Model, version one, J.
Climate, in press (1998).

3. http://www.cgd.ucar.edu/ccr/pcm

. F.O. Bryan, B.G. Kauffman, W.G. Large and P.R. Gent, The NCAR CSM Flux
Coupler, NCAR Technical Note No. 424, National Center for Atmospheric Research,
Boulder, CO (1996).

5. P.W. Jones, First and second-order conservative remapping schemes for grids in
spherical coordinates, in preparation (1998).

. J. Dennis, The glue that holds it together: NCAR's model coupling library, to appear in
Making Its Mark: The Use of Parallel Processors in Meteorology, ed.G-R. Hoffman
(1998).

7. R.D. Smith, J.K. Dukowicz and R.C. Malone, Parallel ocean general circulation
modeling, Physica D, 60, 38 (1992).

8. K. Bryan, A numerical method for the study of the circulation of the world ocean, J.
Comp. Phys., 4, 347 (1969).

9. M.D. Cox, A primitive-equation three-dimensional model of the ocean, GFDL Ocean
Group Tech. Rep. No. 1, GFDL/NOAA, Princeton Univ., Princeton, NJ (1984).

10. A.J. Semtner, Jr., Finite-difference formulation of a world ocean model, in Advanced
Physical Oceanographic Numerical Modeling, ed. J.J. O'Brien (Dordrecht: Reidel,
1986).

11. R.M. Chervin and A.J. Semtner Jr., An ocean modelling system for supercomputer
architectures of the 1990s, in Proc. of the NATO Advanced Research Workshop on
Climate-Ocean Interaction, ed. M. Schlesinger (Dordrecht: Kluwer, 1988).

12. J.K. Dukowicz and R.D. Smith, Implicit free-surface method for the Bryan-Cox-
Semtner Ocean Model, J. Geophys. Res., 99, 7991 (1994).

13. P.R. Gent and J.C. McWilliams, Isopycnal mixing in ocean circulation models, J.
Phys. Oceanogr., 20, 150 (1990).

246

14. W.G.Large,J.C.McWilliams andS.C.Doney,Oceanicverticalmixing: areviewand
amodelwith anonlocalboundarylayerparameterization,Rev. Geophys., 32, 363
(1994).

15. R.D. Smith, S. Kortas and B. Melz, Curvilinear coordinates for global ocean models,

J. Comp. Phys., submitted.

16. E.C. Hunke and J.K. Dukowicz, An elastic-viscous-plastic model for sea ice

dynamics, J. Phys. Oceanogr., 27, 1849 (1997).

17. A.J. Semtner Jr., A model for the thermodynamic growth of sea ice in numerical

investigations of climate, J. Phys. Oceanogr., 6, 379 (1976).

18. G.A. Maykut and N. Untersteiner, Some results from a time dependent
thermodynamic model of sea ice, J. Geophys. Res., 76, 1550 (1971).

19. J.T. Kiehl, J.J. Hack, G.B. Bonan, B.A. Boville, B.P. Briegleb, D.L. Williamson

and P.J. Rasch, Description of the NCAR Community Climate Model (CCM3), NCAR
Technical Note NCAR/TN-420+STR, National Center for Atmospheric Research,

Boulder, CO (1996).

20. G.B. Bonan, The land surface climatology of the NCAR land surface model coupled

to the NCAR Community Climate Model (CCM3), J. Climate, in press (1998).

247

248

Author: Rodney James

National Center for Atmospheric Research
P.O. Box 3000

Boulder, CO 80307

rodney@ncar.ucar.edu

Co-author(s): T. Bettge
S. Hammond

Portability and Performance of a Parallel Coupled Climate Model

The Parallel Climate Model (PCM) is a coupled climate system model being developed in a collaborative effort at

NCAR with support from the DOE Climate Change Prediction Program (which includes scientists and software

engineers from the Los Alamos National Laboratory and the Naval Postgraduate School). PCM has four

components: ocean, atmosphere/land, and ice models, and a flux coupler, all combined into a single portable

program which can be run on several parallel platforms. The ocean, atmosphere/land, and ice component models

are configured on different grids with different time steps. Component model interactions, both temporal and

spatial, are coordinated through the flux coupler. In this paper, we discuss the details of the coupled model software

architecture and the strategies used for maintaining both code portability and performance portability across

platforms. We present details of the computational and communication efficiency for the complete coupled model

as well as the individual components on different systems from different vendors. Finally, we compare and contrast

PCM performance and scaling results on several different parallel machines for four processors up to hundreds of

processors.

249

250

An atmospheric general circulation model with chemistry for the
CRAY T3E: Design, performance optimization and coupling to an

ocean model

John D. Farrara, Leroy A. Drummond, Carlos R. Mechoso, Joseph A. Spahr
Department of Atmospheric Sciences, University of California, Los Angeles, Mall Stop 156506,

Los Angeles, CA 90095-1565, j farrara @ucla.edu, + 1 310 825-9205, FAX: + 1 310 206-5219

Tom Clune

SGI/Cray Research

Abstract

The design, implementation and performance optimization on the CRAY T3E of an atmospheric
general circulation model (AGCM) which includes the transport of, and chemical reactions among,
an arbitrary number of constituents is reviewed. The parallel implementation is based on a two-
dimensional (longitude and latitude) data domain decomposition. Initial optimization efforts
centered on minimizing the impact of substantial static and weakly-dynamic load imbalances among
processors through load redistribution schemes. Recent optimization efforts have centered on
single-node optimization. Strategies employed include loop unrolling, both manually and through
the compiler, the use of an optimized assembler-code library for special function calls, and
restructuring of parts of the code to improve data locality. Data exchanges and synchronizations
involved in coupling different data-distributed models can account for a significant fraction of the
running time. Therefore, the required scattering and gathering of data must be optimized. In
systems such as the T3E, there is much more aggregate bandwidth in the total system than in any
particular processor. This suggests a distributed design. The design and implementation of a such
distributed 'Data Broker' as a means to efficiently couple the components of our climate system
model is described.

1. Introduction

The primary means of studying the Earth's climate and its variability is numerical modeling.
Numerical models of the climate system must account for the complex interactions and feedbacks
among its components. Examples of phenomena that can be studied using such 'climate system
models' are El Nifio-Southern Oscillation events, the role of the oceans in moderating the
greenhouse warming effect of carbon dioxide and other gases, and the behavior of the ozone layer.
The primary components of the climate system are the atmosphere and ocean, which are

represented by general circulation models (GCMs). Led by Akio Arakawa, the Department of
Atmospheric Sciences at UCLA has pioneered the development of atmospheric GCMs (AGCMs).

These models are constantly being improved through revisions in their numerical schemes and
physical parameterizations as well as through the incorporation of new physical processes.
Simulations using GCMs are computationally very demanding because there are a large number of

physical quantities to be predicted and also because very long simulations (on the order of 10 7

model timesteps) are usually required. We are now entering "the great challenge" third phase of

251

atmosphericmodeling(Arakawa[1]). To meetthechallengesof this phase,it is essentialto: 1)
revise thedynamicalcoreof atmosphericmodels and adjust the physical parameterizationsto
accommodatethenewcore, and2) optimizethe model's codefor high performancecomputing
environments. In this paper,we addressthe secondof theserequireddevelopmentswith an
accountof thedesign,optimizationandperformanceof theUCLA GCM codeincludingchemical
tracers in scaleableparallel computing environments. We also review the design and
implementationof asystemwehavedevelopedtoefficientlycouple this model to an ocean GCM.

2. The AGCM and the parallel implementation of its code

The UCLA AGCM is a state-of-the-art finite-difference model of the global atmosphere. The
model predicts the horizontal wind, potential temperature, water vapor mixing ratio, planetary
boundary layer depth and the surface pressure as well as the surface temperature and snow depth
over land. The model also optionally predicts the concentrations of an arbitrary number of
chemical tracers. The horizontal finite-differencing is done on a staggered Arakawa "C"-grid
which is regular in longitude and latitude and is a fourth-order accurate version of the differencing
scheme of Arakawa and Lamb [2]. The differencing of the thermodynamic energy and water vapor
(and other tracers) advection equation is also based on a fourth-order accurate scheme. The vertical
coordinate used is the modified sigma coordinate of Suarez et al. [3]. In this coordinate, the lowest
model layer is the planetary boundary layer. The vertical finite differencing is performed on a
Lorenz-type grid following Arakawa and Lamb [2] in the stratosphere and Arakawa and Suarez [4]
in the troposphere. This differencing is of second order accuracy and is designed to conserve the
global mass integrals of potential temperature and total energy for adiabatic, frictionless flows. For
the integration in time of the momentum, thermodynamic energy and tracer advection equations, a
leapfrog time differencing scheme is used with a Matsuno step regularly inserted to prevent
separation of the solution. Filtering of selected terms in the prognostic equations is performed at
high latitudes (see Section 2b). A nonlinear horizontal diffusion of momentum, with a small
coefficient, is included following Smagorinsky [5]. This diffusion is applied at each time. step,
using a forward time differencing. In layers where an unstable stratification of mass develops
(potential temperature decreases with height), it is assumed that sub-grid scale dry convection

occurs and the prognostic variables in the layers involved are completely mixed.

Planetary boundary layer processes are parameterized using the mixed-layer approach of Suarez et
al. [3]. In this parameterization, surface fluxes are calculated following the bulk formula proposed
by Deardorff [6]. Parameterization of the effects of cumulus convection, including its interaction
with the PBL, follows Arakawa and Schubert [7] and Lord et al. [8], with a relaxed adjustment
time scale as described in Ma et al. [9] (see Section 2c). The parameterization of both terrestrial
and solar radiative heating follows Harshvardhan et al. [10, 11]. The cloud optical properties are
specified as in Harshvardhan et al. [l 1]. This prescription makes a distinction between stratiform

and "cumulus anvil"-type clouds. "Cumulus anvil"-type clouds are assumed to exist at each model
layer above 400 mb where the cumulus mass flux is positive; stratiform clouds are assumed to
occur at grid points where the predicted relative humidity exceeds 100%. The effects of subgrid-
scale orography are included via a gravity wave drag parameterization (Kim and Arakawa [12],
Kim [13]). The transformations of chemically active gases and aerosol tracers in the atmosphere
are described by the UCLA atmospheric chemistry model (ACM). This model includes algorithms
to solve photochemical and thermochemical coupled systems, a detailed treatment of the
microphysics of small particles, and a fully integrated radiation package (Elliot et al. [14] and
references therein). The geographical distribution of sea ice and sea surface temperatures are
prescribed on a monthly basis. Surface albedo and roughness lengths are specified following
Dorman and Sellers [15], in which roughness lengths over land vary according to vegetation type.

252

Daily values of these surface conditions are determined from the monthly mean values by linear
interpolation.

a. Structure and parallel implementation of the code

In AGCMs physical processes are modeled either explicitly or implicitly via parameterization of the
effects of subgrid physical processes on the grid-scale processes. This division is reflected in the
UCLA AGCM code in that there are two major code components: AGCM/Dynamics, which
computes the evolution of the fluid flow governed by the primitive equations, and AGCM/Physics,
which computes the effects of subgrid scale processes (such as cumulus convection) on the grid
scale (see Figure 1). Included in the AGCM/Physics are the calculations performed by the ACM.
The results obtained by AGCM/Physics are supplied to AGCM/Dynamics as forcing for the flow
calculations. The parallel version of the UCLA AGCM code was designed for distributed memory
multiprocessor computing environments (Wehner et al. [16]). A two-dimensional domain
decomposition of the horizontal data domain (longitude-latitude) is used. Subdomains thus consist
of a set of vertical columns from the Earth's surface to the top of the atmosphere. This choice is
based on the fact that many physical processes are strongly coupled in the vertical which makes
parallelization less efficient in that direction. In addition, the number of grid points in the vertical is
usually small compared to the number in the horizontal. There are two types of interprocessor
communications required during the simulation: 1) data exchanges among (logically) neighboring
processors to accomplish the finite differencing, 2) data exchanges among remote processors
necessary for implementation of the high latitude Fourier filtering (see Section 2b). We next
review the structure and implementation of the most computationaUy intensive algorithms, first
those in the AGCM/Dynamics, then those in the AGCM/Physics.

b. AGCM/Dynamics kernels

i) Vertical discretization

The model is formulated using a modified sigma (pressure divided by surface pressure) coordinate
in which the top of the model layer nearest the Earth's surface (called the planetary boundary layer,
or PBL) is a coordinate surface (Suarez et al. [3]). Hence, the pressure levels corresponding to
particular values of sigma vary with time. The prognostic variables are staggered in the vertical
following the Lorenz scheme, in which potential temperature, the horizontal wind components and
the mixing ratio of water vapor are defined in the middle of the layers, while the diagnostically
determined vertical velocity is defined at the interfaces between the layers. Accomplishing this
vertical differencing is computationally demanding because it requires the calculation at every
timestep of several functions of pressure involving exponentials and real numbers raised to a real
power. We describe our approach to optimizing this part of the code in Section 3a.

ii) Polar filtering

To avoid use of the extremely small timestep necessary to satisfy the Courant-Friedrich-
Levy (CFL) condition near the poles, a longitudinal averaging (which takes the form of a Fourier

filter) is performed on selected terms in the momentum equation. This filter acts poleward of 45 °
latitude and its strength is gradually increased towards the pole by increasing the number of
affected zonal wavenumbers and the amount by which they are damped (Arakawa and Lamb [4]).
As explained in Lou and Farrara [17], the high cost of performing this filtering stems from two
factors. The first is the substantial non-nearest neighbor communication required. The second is
the severe load imbalance imposed by the fact that only subdomains containing high-latitude points
perform this filtering. Lou and Farrara [17] describe a load-balancing scheme for the filtering

253

which is basedon evenlydistributingcompletelongitude-heightslices of fields to be filtered
amongall processors.Wedescribeourattemptsto furtheroptimizethispartof thecodein Section
3b.

c. AGCM/Physics kernels

i) Terrestrial radiation

The parameterization of terrestrial radiation follows Harshvardhan et al. [10, 11]. This scheme
includes the effects on longwave radiative transfer of water vapor, carbon dioxide and ozone as
well as convective and stratiform clouds. The absorption/emission of radiation is determined using
the broadband transmission approach of Chou [18] for water vapor, that of Chou and Peng [19]
for carbon dioxide and that of Rodgers [20] for ozone. In this approach, the transmission
functions for reference atmospheric temperature profiles at specified pressure levels are

precomputed using highly accurate line-by-line methods. Adjustments are then made to these
precomputed transmission functions via 'scaling functions', together with the temperature
deviations from the reference profile, to obtain transmission functions for other atmospheric
profiles. Thus, the success of the parameterization rests in part on the choice of reference
conditions, and these are chosen to correspond to the regions of peak cooling in the atmosphere.
Transmittances are computed in five bands, two each for water vapor and carbon dioxide and one
for ozone. The original implementation of this code [18] was designed for vector supercomputers
and performed table look-ups of the precomputed transmission functions. The table lookups were
replaced by fitting algebraic functions to the tables since the table lookups were difficult to
efficiently vectorize. The algebraic functions are mostly exponentials, while the scaling functions
contain the scaled pressure raised to a real constant. In order that the code vectorize efficiently it
was structured to perform calculations on multiple atmospheric columns simultaneously.
However, this structure is not optimal for the T3E processors since the cache reuse is poor. We
describe our restructuring of this code for greater efficiency on cache-based architectures in Section
3c.

ii) Cumulus convection

The Arakawa-Schubert pararneterization (Arakawa and Schubert [7], Lord et al. [8]) is used to

compute the interactions of grid-scale prognostic variables and subgrid-scale cumulus convection.
Specifically this parameterization determines the mass fluxes produced by subensembles of
cumulus clouds originating in the PBL. These mass fluxes are used to obtain the heating, moisture
source/sink and momentum redistribution in the vertical. Multiple cloud types are permitted and all
clouds of a particular type are assumed to be identical. The total collection of cumulus clouds is
referred to as a cumulus ensemble, and the clouds that belong to a particular cloud type are referred
to as a subensemble. Each subensemble is distinguished from the others by its fractional
entrainment rate, which is assumed to be independent of height.

There are two primary components to the AS scheme. The first component describes how the
internal sounding of an individual cumulus cloud is controlled by the large-scale environment in
which it develops. This component is called the "static control". The second component describes
how an ensemble of cumulus clouds modifies the large-scale thermodynamic structure of the
atmosphere. This component of the parameterization is called the "feedback". The large-scale
tendencies due to a particular subensemble are proportional to the cumulus mass flux at the cloud
base (the PBL top) for that subensemble. The AS parameterization can thus be closed by
determining cumulus mass fluxes at the cloud base associated with each subensemble. This
closure is achieved through a description of how the cloud-base mass fluxes are controlled by the

254

evolutionof thelarge-scaleenvironment.This iscalled"dynamiccontrol". Specifically,the rate at
which conditional instability is generated by large-scale processes is very nearly balanced by the
rate at which cumulus clouds suppress conditional instability by their feedback on the large-scale
environment. This is referred to as the "quasi-equilibrium" hypothesis. As a measure of
conditional instability, AS defined a cloud work function (CWF) as the rate of generation of

cumulus cloud-scale kinetic energy for a particular subensemble, per unit cloud base mass flux into
that subensemble. According to this definition, the CWF as well as the cloud base mass flux are

positive or zero. Positive values of the CWF indicate the existence of conditional instability for a
given subensemble. The CWF is computed from the environmental sounding using a simple cloud

model. In practice, solving for a set of cloud base mass fluxes (one for each subensemble) subject
to the condition that all must be non-negative is mathematically tricky and expensive
computationally.

Since the model has a discrete vertical structure, cloud types (subensembles) are denoted by their
cloud-top pressure rather than fractional entrainment rate. However, since the fractional
entrainment rate is needed to determine the in-cloud sounding, it is necessary to solve for the
fractional entrainment rate that is consistent with each cloud-type each time the parameterization is
invoked. Since this solution must be obtained iteratively, it is rather expensive computationally.

The rate at which conditional instability is generated by large-scale processes is straightforwardly
determined. The rate at which each cloud type suppresses conditional instability (and thereby
interacts with every other cloud-type) is somewhat more complicated to compute. A small "trial
mass flux" is assigned to each cloud type in turn. This trial mass flux is assumed to act over a time
interval on which the parameterization is called, producing changes in the temperature and moisture
profiles through the feedback process; the implied change in each cloud-type's work function is
then evaluated. In Section 3d we explore a computationaUy less expensive option to this
algorithm.

3. Optimization of major computational kernels

In this section, we discuss the results of our effort to optimize the most computationally intensive
algorithms, first those in the AGCM/Dynamics, then those in the AGCM/Physics. It should be
noted that there are a number of other routines (parts of the algorithm) that contribute significantly
to the overall execution time; this makes the optimization of GCMs especially challenging. All
timings reported in this section correspond to the wall-clock times required to simulate one day

using the 2.5 ° longitude, 2 ° latitude, 29 layer version of the model running on a CRAY T3E-600
with 2 chemically active species (CFCs). In each of the Tables below we present (in addition to
the timings for particular kernels) the total model execution time; note that this time succesively
decreases as each of the optimizations is included. The starting point for these total times (125
seconds/simulated day) corresponds to a version of the code that uses: i) the original
implementation of the vertical discretization code, the load balanced filtering code of Lou and
Farrara [17], the multi-column implementation of the Harshvardhan [10, 11] longwave radiation
code (including calls to assembler coded special functions) and the standard Arakawa-Schubert [7,
8] cumulus convection parameterization.

a. AGCM/Dynamics kernels

i) Vertical discretization

The vertical differencing is computationally demanding because it requires the calculation at

every timestep of several functions of pressure involving exponentials and real numbers raised to a
real power. To reduce the impact of computing these expensive special functions we are using
vectorized assembly-coded routines to perform these operations (Drummond et al [22]). The

255

reductionin executiontimeobtainedis given in Table 1. The impacton the time spentin the
verticaldifferencingis substantial(40% reduction),but the overall run timeis only marginally
improved.

Table 1. Vertical Discretization Time (seconds/simulated day).

Vertical discretization time

Total model execution time

Original Implementation With assembler-coded

s_cial functions
5.25 3.12

125 123

ii) Polar filtering

Lou and Farrara (1996) describe a load-balancing scheme for the filtering which is based on evenly

distributing complete longitude-height slices of fields to be filtered among all processors. When
large numbers of processors are used the load redistribution with this method becomes poor as the
number of processors can be nearly as large or larger than the number of slices to be filtered.
Therefore, we have modified this scheme to break up these longitude-height slices and redistribute
individual longitudes (rows) of data. This results in a larger number of units of work to be
redistributed, giving a better load balance on large numbers of processors. This can be seen in
Table 2 which give the timings of the original load-balanced filtering and the revised load-balanced
filtering algorithms. The time spent in faltering has been reduced by 40% resulting in a 10%
reduction in total execution time.

Table 2. Total Polar Filtering Time (seconds/simulated day).

Filter time

Total model execution time

Original Load Balanced

Filterin_ [17]
20.5

123

Revised Load Balanced

Filterin_
12.3

114

b. AGCM/Physics kernels

i) Terrestrial Radiation

The exponential and real raised to a real power operations, as in the vertical discretization, are the
most expensive operations in the terrestrial radiation. As in the vertical discretization code, we are
using vectorized assembler-coded routines to perform these operations. As indicated in Section 2c,
this code was originally structured for vector supercomputers, such that calculations were
performed on multiple atmospheric columns simultaneously. On machines such as the T3E, the
overhead in processing a set of instructions from a program is contributed primarily by the retrieval
of data from main memory into cache. In an attempt to minimize the traffic of data between cache
and main memory, we have re-written the terrestrial radiation code to operate on only a single
atmospheric column at a time, thereby reducing the sizes of many of the arrays used in this part of
the code and increasing substantially the cache reuse. The timing for the original and restructured

versions (assembler routine calls for special functions are used in both cases) of this code are given
in Table 3. Table 3 shows a reduction in time spent in the terrestrial radiation computation of

approximately 20% as well as a modest reduction in the overall time of about 4%.

256

Table 3. Terrestrial Radiation Time (seconds/simulated day).

Terrestrial Radiation time

Total model execution time

Multi-column (original) Single-column

Implementation Implementation
21.9 17.1

114 110

ii) Cumulus convection

There are significant mathematical and computational drawbacks to the standard Arakawa-Schubert

cumulus parameterization we have been using (see Section 2). Therefore, we decided to replace it
with a revised version of the algorithm called "prognostic" Arakawa-Schubert (Randall and Pan
[21]). In this "prognostic" version, the CWF quasi-equilibrium is relaxed by predicting the cloud-
scale kinetic energy. It has been shown (Randall and Pan [21]) that this prognostic version
reduces in principle to the CWF quasi-equilibrium as the dissipation time scale for the cloud kinetic
energy goes to zero. In practice, it has been found that the time-averaged cloud base mass flux,
and, therefore, time-averaged cumulus heating and drying are approximately the same as that
obtained with the standard AS parameterization. One of the main advantages of this approach is
that the difficulties and expense of simultaneously diagnosing a set of physically reasonable cloud

base mass fluxes that satisfy the CWF quasi-equilibrium are avoided. In this scheme, the predicted
CKE is used to simply determine the cloud base mass fluxes for each subensemble. A secondary
cause for the poor performance of the standard AS code is poor cache reuse; this problem is related
to the large number of arrays required to solve for the cloud base mass fluxes and becomes acute as
the number of vertical levels increases. This problem is also alleviated in the prognostic version as
the code is considerably simplified and the number of arrays is substantially reduced. The impact
on performance is huge (see Table 4); the prognostic AS is 6.5 times faster than the standard,
yielding a reduction in total execution time of 30%.

Table 4. Cumulus convection Time (seconds/simulated day).

Standard Arakawa-Schubert Pro[nostic Arakawa-Schubert
Cumulus Time 39.8 6.1

Total model execution time 110 76.5

c. Overall improvement

The overall reduction in execution time is 48.5 seconds per simulated day. The majority of this

improvement (33 seconds) was due to the use of the prognostic version of the Arakawa-Schubert
cumulus parameterization. However, the cumulative effect was the other optimizations was
significant, amounting to a reduction of more than 1.5 hours in the time required to simulate one
year (9.3 hrs --> 7.7 hrs). In addition to the above optimizations, we have found that using the
"streams" option on the T3E reduces the overall wall-clock time by additional 15%. However, a
hardware bug on the T3E-600 renders the machine unstable when this option is used in
conjunction with certain types of calls to the SHMEM library routines for transferring data among

processors. Therefore all the timings reported above are for runs that do not use this option.
Currently, the model code runs 4.4 times faster on the T3E than on the T3D, achieving a peak
performance of 35 Gflops on 512 T3E-600 nodes (see Fig. 2). On the T3E, the model code
executes approximately 8.5 times faster on 256 nodes than on 16 nodes (the smallest number of

257

nodesthatwill run thissizeproblem),resultingin a parallelefficiencyof 53%. For thisproblem
size, the parallelefficiency drops off above256 nodes. Clearly, higher efficienciescan be
achievedfor higherresolutionconfigurations.Ourfutureworkwill centeron optimizingthe ACM
portionof thecodeasthispartof thecodebecomesabsolutelydominantwhen, for example,a 25
speciesconfigurationappropriatefor thestudyof stratosphericozoneisused(seeFigure3).

4. Coupling to an ocean GCM

As indicated in Section 2a, the AGCM consists of two major components, AGCM/Dynamics and
AGCM/Physics. The ocean general circulation model (OGCM) also has two major components:
OGCM/Baroclinic, which determines the deviations from the vertically averaged velocity,
temperature and salinity fields, and OGCM/Barotropic, which determines the vertically averaged
distributions of those fields. When run on a single node, the AGCM and OGCM codes execute
sequentially and exchange fields corresponding to the air-sea interface. The AGCM is fn'st
integrated for a fLxed period of time and then transfers the time-averaged surface wind stress, heat
and water fluxes to the OGCM. This component is then integrated for the same period of time and
transfers the sea surface temperature to the AGCM. When run on multiple processors, a scheme
that allows the two codes to run in parallel is used. Because AGCM/Dynamics does not exchange
data with the OGCM, these components can run in parallel. Further, AGCM/Physics can start as
soon as OC_M/Baroclinic completes its calculation, because this includes the sea surface
temperature, and can thus run in parallel with OGCM/Barotropic. The efficiency of this scheme

depends primarily on having a good balance between the run times for the components running in
parallel.

To optimize the required gathering and scattering of fields between different data distributed
models we have designed a distributed Data Broker. The Data Broker is designed such that the
problem of efficiently coupling model components is been broken up into a small number of
relatively independent and reusable kernels, consisting of a Registration Broker, model specific
Interpolation routines, and model communications libraries (see Figure 2). The Registration
Broker keeps track of the production of, and requests for, multi-dimensional data and their
frequencies of production/consumption. The distributed producers and consumers communicate
with the Data Broker via the model communications library, which in turn arranges for the

appropriate pieces to be transmitted by each of the distributed 'producers' of the fields to each of
the distributed 'consumers'. In contrast to the code of the component models, which is 99%
FORTRAN, the Data Broker is implemented using C++ and tcl/tk with a FORTRAN-callable
interface.

5. Summary

Computer simulations using GCMs are indispensible in studies of the fundamental issues that
affect our environment. Such simulations are very demanding of computer resources and eptomize
the challenge of Earth Sciences to computer technology. We have addressed this challenge by
developing a coupled atmosphere/ocean/chemistry model that makes efficient use of one of today's
highest performing computing environments (the CRAY T3E). One of the scientific issues we
plan to address with the coupled AGCM/OGCM configuration of this model is the decadal
modulation of El Nifio-Southern Oscillation events. For this investigation, we require coupled
simulations at least several decades or even a century long. To date, available resources have
limited us to multi-decadal simulations using a medium range of resolution (for example, the
AGCM resolution was coarser than that timed here). With the newly optimized versions of the

258

modelcodes,weplanto runcentury-longcoupledsimulationsusinghigherresolutionfor boththe
AGCM and OGCM. Whentheresultsof our currentoptimizationwork targetingthe ACM are
completeweplaninvestigationsof thestratosphericozonelayer. For this, we will performmulti-
decadalsimulationswith theAGCM/ACM atthesamehighresolutionandusingthe25 chemical
speciesrequiredto accuratelysimulatetheevolutionof ozonein thestratosphere.

Acknowledgments. This work has been supported by the NASA High Performance
Computing and Communications for Earth Sciences Project under CAN 21425/041 and the
Department of Energy's CHAMMP Program under Grant DE-F03091ER 1214.

References

[1] Arakawa, A., 1998: A personal perspective on the early years of general circulation modeling
at UCLA. Proceedings, AA fest, January 1998, Los Angeles, CA, in press.

[2] Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes

of the UCLA general circulation model. Methods in Computational Physics, 17, Academic
Press, New York, 173-265.

[3] Suarez, M. J., A. Arakawa, and D. A. Randall, 1983: The parameterization of the planetary

boundary layer in the UCLA general circulation model: Formulation and results. Mon. Wea.

Rev., 111, 2224-2243.
[4] Arakawa, A., and M. J. Suarez, 1983: Vertical differencing of the primitive equations in sigma

coordinates. Mon. Wea. Rev., 111, 34-45.

[5] Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The

basic experiment. Mon. Wea. Rev., 91, 99-164.
[6] Deardorff, J. W., 1972: Parameterization of the planetary boundary layer for use in general

circulation models. Mon. Wea. Rev., 100, 93-106.

[7] Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the

large-scale environment. Part I. J. Atmos. Sci., 31, 674-701.
[8] Lord, S. J., W. C. Chao, and A. Arakawa, 1982: Interaction of a cumulus cloud ensemble

with the large-scale environment. Part IV: The discrete model. J. Atmos. Sci., 39, 104-113.
[9] Ma, C.-C., C. R. Mechoso, A. Arakawa and J. D. Farrara, 1994: Sensitivity of a coupled

ocean-atmosphere model to physical parameterizations. J. Climate, 7, 1883-1896.
[10] Harshvardhan, R. Davies, D. A. Randall, T. G. Corsetti, 1987: A fast radiation

parameterization for atmospheric circulation models. J. Geophys. Res., 92, 1009-1016.
[11] Harshvardhan, D. A. Randall, T. G. Corsetti, and D. A. Dazlich, 1989: Earth radiation

budget and cloudiness simulations with a general circulation model. J. Atmos. Sci., 46,
1922-1942.

[12] Kim, Y.-J., and A. Arakawa, 1995: Improvement of orographic gravity-wave

parameterization using a mesoscale gravity-wave model. J. Atmos. Sci., 52, 1875-1902.
[13] Kim, Y.-J., 1996: Representation of subgrid-scale orographic effects in a general circulation

model: Part I. Impact on the dynamics of simulated January climate. J. Climate, 9, 2698-
2717.

[14] Elliott, S., X. Zhao, R. Turco, C-Y. Kao and M. Shen, 1995: Photochemical numerics for

global scale modeling: Fidelity and GCM testing. J. Applied Meteorology, 34, 694-718.
[15] Dorman, J. L., and P. J. Sellers, 1989: A global climatology of albedo, roughness length

and stomatal resistance for atmospheric general circulation models as represented by the

Simple Biosphere model (SiB). J. Appl. Meteor., 28, 833-855.
[16] Wehner, M. F., A. A. Mirin, P. G. Eltgroth, W. P. Dannevik, C. R. Mechoso, J. D. Farrara

and J. A. Spahr, 1995: Performance of a distributed memory finite-difference atmospheric

general circulation model. Parallel Computing, 21, 1655-1675.

259

[17] Lou, J.-Z., and J. D. Farrara, 1996: Performance analysis and optimization on the UCLA

parallel atmospheric model code. Proceedings of Supercomputing '96
[18] Chou, M. D., 1984: Broadband water vapor transmission functions for atmospheric IR flux

computations. J. Atmos. Sci., 41, 1775-1778.

[19] Chou, M. D., and L. Peng, 1983: A parameterization of the absorption in the 15 mm CO2

spectral region with application to climate sensitivity studies. J. Atmos. Sci., 40, 2183-
2192.

[20] Rodgers, C. D., 1968: Some extension and applications of the new random model for

molecular band transmission. Quart. J. Roy. Meteor. Soc., 94, 99-102.
[21] Randall, D. A., and V. Pan, 1993: Implementation of the Arakawa-Schubert cumulus

parameterization with a prognostic cumulus kinetic energy. The Representation of Cumulus

Convection in Numerical Models of the Atmosphere, K. A. Emanuel and D. J. Raymond,
Eds., American Meteorological Society. 137-144.

[22] Drummond, L. A., J. D. Farrara, C. R. Mechoso and J. Z. Lou, 1997: Performance

optimization of an atmospheric model in massively parallel computers. Proceedings of High

Performance Computing and Networking '97 (HPCN '97), Vienna, Austria, 28-30 April
1997, 67-71.

260

AGCM Main Loop Physics

$
$

$

$
$

$

$

$
$

Hydrodynamics

Figure I.A schematic of the structureof the AGCM code.The main components are the Physics and

Hydrodynamics (or,as inthe text,Dynamics).

261

30

15

10

0 50 150 _0 400 4,50 500

Figure 2. Performance of the AGCM/ACM on the T3D and T3E as a function of number of processors.

On the T3E the model code executes approximately 8.5 times faster on 256 nodes than on 16 nodes

(smallest number that will fit this size problem), resulting in a parallel efficiency of 53%. For this

problem size, the parallel efficiency decreases rather rapidly above 256 nodes. The FLOPs were counted

using the Apprentice toolkit on the T3D.

262

50 10¢ "-_ _ _.,50 200 _ -I00 .-!,._0 .500

Figure 3. AGCM/ACM timings (expressed in seconds/simulated day) for two different configurations of

the ACM. The lower curve corresponds to the configuration using with 2 photochemically active species

(CFCs); the timings for this configuration is not very different from those for the AGCM alone. The

upper curve corresponds to a configuration involving the 25 species required to simulation the evolution

of stratospheric ozone. In this case, the ACM execution time becomes absolutely dominant as the total

execution time is more than one order of magnitude greater in this case.

263

Figure4. A schematic of the AGCM/OGCM/ACM coupled using the "Data Broker". A model

communication library interface (MCL) allows the code components to exchange field variables with

other components without knowing the details of how data are distributed for the other components. The

communication library (CL) interface and the registration broker (RB) perform the function of moving

data to/from the models. Finally, interpolation and extrapolation routines (I) are available for each

model. These routines perform the various mappings and/or transformations of data from different grids

or units to the desired representation.

264

Co-Array Fortran: current status and recent results with MICOM

llene Carpenter

Silicon Graphics/Cray Research
655E Lone Oak Drive

Eagan, MN 55121

ilene@cray.com

+1 612 683-3629

Robert W. Numrich

Silicon Graphics/Cray Research
655E Lone Oak Drive

Eagan, MN 55121

rwn@cray.com
+1 612 683-5481

Aaron Sawdey

Silicon Graphics/Cray Research

655A Lone Oak Drive

Eagan, MN 55121

sawdey@cray.com
+1 612 683-5872

John Reid

Rutherford Appleton Laboratory

Dept. for Computation and Information

Chilton, DIDCOT

Oxon, UNITED KINGDOM

OXl 1 0QX
J.K.Reid@rl.ac.uk

+44 1235 446493

Co-array Fortran [1], formerly known as F'[2,3,4,5,6], is a simple extension to Fortran 90/95,

which uses a second set of array subscripts to address that array in different processes. Co-array

Fortran is very close in spirit to the one-sided message-passing library (SHMEM) and can be

thought of as syntax for the one-sided get/put model that is incorporated into the Fortran language.

It adopts a Single-Program-Multiple-Data (SPMD) programming model, in which a single program

is replicated to a number of images, each with its own local data. Within each image, the normal

rules of Fortran apply, as if it were a single program. Each image has a unique index associated

with it and executes asynchronously. The programmer uses explicit synchronization procedures as
needed.

Communication between images is done through a new type of object called a co-array. A co-array

is a variable declared with dimensions in square brackets instead of, or in addition to, the

dimensions declared with parentheses. Array indices in square brackets provide a convenient

265

notation for accessing objects across images, and follow similar rules to ordinary Fortran array

indices. A co-array is declared or allocated with an asterisk for its final dimension and it always has

size equal to the number of images. A reference to a co-array with no square brackets attached to it

is a reference to the object in the local memory of the executing image. When communication is

needed, the programmer uses the image number of the remote image in the square brackets to

generate a reference to an object in the remote image. For example, the statement

real, dimension(n) [*] :: x,y

creates two real arrays of size n in each image. Because of the square brackets, these arrays are

also co-arrays. The statement

x(5) =y(5) [q]

copies the value of y(5) in image q to the local value x(5) in the image that executes the

statement. Local variables become globally visible only through co-array syntax.

Co-array syntax is more flexible than libraries or directives because it allows arbitrary Fortran

90/95 variable types and arbitrary communication patterns. For example, if different sizes are

required on different images, a co-array may be declared of a derived type with a component that is

a pointer array. The pointer component is allocated on each image to have the desired size for that

image (or not allocated at all, if it is not needed on the image). The statement

x(:) = a[p]%ptr(:)

means 'Go to image p, obtain the pointer component of variable a, read from the corresponding

pointee, and place that data in the local array x'. This flexibility may be the key to difficult

problems such as adaptive mesh refinement.

Each image has its own independent I/O units. A file may be opened on one image when it is

already open on another. For all units (except those identified by * in a READ or WRITE

statement) each image positions each file independently. If file access order matters, the

programmer needs to synchronize explicitly.

Most atmospheric and ocean models are parallelized using domain decomposition. Co-array

Fortran is a natural representation of domain decomposition and provides a simple and efficient

way to parallelize these codes. Consider the calculation of the maximum value of a co-array:

subroutine greatest (a, great)

, find maximum value of a(:) [*]

real, intent (in) :: a(:) [*]

real, intent (out) :: great[*]

real : : work(num_images ())

great = max(a(:))

call sync images()

if (this_image (great)

work=great [:]

images

great[:]

end if

== i) then
!

=max (work) !

' local work array

! find max of local data

gather local max from other

scatter global max to all images

266

end subroutine greatest

Next, considerthet_kofeachimagegeuingapieceofaglobalarr_ from the'_as_r"image:
subroutine splat(xglobal, xlocal, lev, master)

include 'dimensions.h'

real xglobal(-nbdy+l:I_max+nbdy, -nbdy+l:j_max+nbdy)[O:l]

real xlocal(-nbdy+l:idm+nbdy, -nbdy+l:jdm+nbdy, lev)

integer lev, master

if(me.eq.master) then

do i0 j=l-nbdy, jj+nbdy

do i0 i=l-nbdy, ii+nbdy

xlocal(i,j,lev)=xglobal(i+istart-l,j+jstart-l)

continuei0

else

do 20 j=l-nbdy, jj+nbdy

do 20 i=l-nbdy, ii+nbdy

xlocal(I,j,lev)=xglobal(i+istart-l,j+jstart-l) [master]

20 continue

endif

return

end

Other examples of tasks common to this class of applications will be presented.

Portions of co-array Fortran have been incorporated into the SGI F90 compiler (versions 7.2 and

7.2.1) and the message-passing version of MICOM has been converted to use co-array Fortran.

Performance of MICOM using co-array Fortran will be compared to that achieved with other

programming models on SGI/Cray systems.

References:

[1] Numrich, R.W. and Reid, J. Co-array Fortran for parallel programming. Technical Report,

Rutherford Appleton Laboratory, in preparation

[2] Numrich, R.W. F-: A parallel Fortran language, Technical Report, Cray Research, Inc., April
1994

[3] Numrich, R.W. F-: A parallel extension to Cray Fortran. Scientific Programming 6, 275-284.

[4] Numrich, R.W. and Steidel, J.L. F: A simple parallel extension to Fortran 90. SlAM News,
30,7,1-8.

[5] Numrich, R.W. and Steidel, J.L. Simple parallel extensions to Fortran 90. Proc. Eighth SIAM

conference on parallel processing for scientific computing, Mar. 1997

[6] Numrich, R.W., Steidel, J.L., Johnson, B.H., de Dinechin, B.D., Elsesser, G., Fischer, G., and

MacDonald, T. Definition of the F extension to Fortran 90. Proceedings of the 10th International

Workshop on Languages and Compilers for Parallel Computers, Lectures on Computer Science

Series, Number 1366, Springer-Verlag

267

268

Metacomputing - What_ in it for me?

Greg Lindahl
Andrew Grimshaw

Adam Ferrari
Katherine Holcomb

University of Virginia Computer Science Department
Thornton Hall

Charlottesville VA 22903

+1 804 982-2293

lindahl @ cs.virginia.edu

Introduction

We are often asked by applications programmers, "What exactly is a metasystem, and why should I care?"

This paper attempts to answer this question from an applications perspective, pointing out concrete ways in

which the current practices of high performance scientific computing can possibly be improved.

What Is A Metasystem?

Before we can answer the challenge posed by the title of this paper, we need to define what a metasystem

is. Physically, a metasystem is a collection of geographically separated resources (people, computers,
instruments, databases) connected by a high speed network. A metasystem is distinguished from a simple

collection of computers by a software layer, often called middleware, which transforms a collection of
independent resources into a single, coherent, virtual machine. This machine should be as simple to use as

the machine on the user_ desktop, and should allow easy collaboration between colleagues located
anywhere in the world.

What is the problem with today_ collections of computers? A typical researcher using machines at multiple
sites faces the problem of slightly or radically different software environments, separatefilesystems which

require frequent copying of files between sites, security policies which prohibit transfer of files between
sites without a human typing in a password, and so forth.

So why don_ we have metasystems today? As usual, the fundamental difficulty is software, specifically an
inadequate model of '_ystems software" for the worldwide collection of computer systems. Faced with the

eternal rush of new hardware, the computing community has stretched existing models - interacting but

autonomous computers - to a level where this model breaks down. The result is a collection of
incompatible, incomplete solutions which work well in isolation, but do not work together nor scale for the
future.

Our vision of a metasystem[4] is of a system containing thousands of computers and terabytes of data in a

loose confederation, tied together by high-speed networks. The user will have the illusion of a very
powerful computer on her desk, and will manipulate objects representing data resources such as databases
of physical data, applications such as physical simulations and visualization tools, and physical devices

such as scientific instruments. To allow the construction of shared workspaces, these objects may be

securely shared with other users.

It is the metasystem_ responsibility to support this illusion of a single machine by transparently

managing data movement, caching, and conversion; detecting and managing faults; ensuring that the user_
data and physical resources are adequately protected, and scheduling application components on the
resources available to the user.

269

The potential benefits of a metasystem to the scientific community are enormous:

• more effective collaboration, by putting co-workers in the same virtual workplace,

• higher application performance due to parallel execution and exploitation of off-site resources,

• improved productivity through a considerably simpler programming environment.

The next section of this paper will introduce an example application, which we will use in the subsequent

section to illustrate the benefits of the major subsystems of the Legion metacomputing system.

Figure 1. Our vision is to construct a shared, high-performance, secure, and fault tolerant computation_
environment for scientists and engineers. The resulting environment will enhance the productivity of the

scientific community.

Example - Multi-Scale Climate Modeling

Climate modeling is an example of a field that can benefit greatly from metaeomputing. Climate modeling

has progressed beyond atmospheric simulations to include multiple aspects of the Earth system, such as
full-depth ocean models, high-resolution land-surface models, sea ice models, chemistry models, and so
forth. Each component model generally requires a different resolution in space and time. We might even

wish to couple global and regional models. For example, an EINino study might involve coupling a global
climate code with a regional weather code.

Over the course of simulating a coupled system, the individual models must exchange data, such as

temperature, winds, and precipitation, and the execution of the entire system must be kept in
synchronization. The models often originate from different research groups around the world and may
even be written in different languages. As an additional complication, some models have parallel

implementations, often using different parallel toolkits.

With existing tools, coupling these models would be tedious and error-prone at best. Many parallel toolkits

are incompatible with each other, and do not support heterogeneous collections of systems. In the
metacomputing environment, the models couldinteroperate on the same or different machines, which need

270

not be in close physical proximity. While this solves some of the problems of coupled climate models,
other difficulties remain. Fault tolerance and security are major issues. Many scientific models write restart

dump files at regular intervals, and can be restarted by hand after a system failure, but this is only a partial
solution. Constant restarting is an aggravation at best; at worst it is a waste of resources and researcher

time, as well as an invitation to error. Security problems, which can often be neglected inside a single
machine, are also potentially increased by use of far-flung resources.

A final issue is visualization. The larger and more complex the simulation, the more critical is the need for
visualization, in order for humans to be able to digest the enormous amount of data generated by high-

resolution scientific models. But it can be difficult to couple visualization tools to applications.

We are currently constructing such a multi-scale climate model as part of theNPACI ESS effort, linking

together the UCLA OC_M/AGCM code with a regional California code.

So What Can I do With a Metasystem?

Our initial description of a metasystem is rather vague and high-level. The real question for users is:
What_ in it for me? There are many ways to use the new capabilities that a metasystem provides. They

range from relatively simple use of Legion facilities to intricateusages which exploit Legiong capabilities
to solve problems currently considered impossible. Below, we sketch out several uses of metasystem

technology, and the capabilities that these features add to your research.

Shared Persistent Object (file) Space

The simplest service a metasystem provides is location-transparent access to data files, which is usually

called a distributed filesystem. An ideal distributedfilesystem allows a user to access a file anywhere in the
world without knowing if the file is local or remote, and without involving her systems administrator.

Having a shared filesystem significantly simplifies collaboration.NFS is a well-known example of a
distributed filesystem[2]. However, NFS requires super-user configuration and has significant security

implications, so few users are able to use NFS to access remote data, or collaborate with colleagues in
remote locations. The World Wide Web provides a limited (read-only) distfibutedfilesystem. Legion_

shared object space provides shared, secure access to data files without super-user configuration.

A more powerful model than shared files is shared object spaces. Instead of just sharing files, all entities -

programs, databases, instruments, etc. - can be named and shared between users. This merging of '151es"
and 'bbjects" is driven by the observation that the traditional distinction between files and other objects is

not necessary. Files represent persistent data, and happen to live on a disk, so files are slower than RAM,

but persist if the computer crashes. In a shared object space, a file object is any object which supports the
standard file operations, such as 'read" and '_arite" In addition, the object interface can also define

additional properties such as its persistence, fault, synchronization, and performance characteristics. Not all
files need be the same; this eliminates the need to provide Unix synchronization semantics for all files,

since many applications simply do not require those semantics. Instead, special semantics can be selected

on a file-by-file basis, and even changed at run-time.

Beyond basic sequential f'des, persistent objects with flexible interfaces offer a range of opportunities,
including:

Application-specific 'file" interfaces. Instead of just read and write, a '2D array file" may also have
functions such as '_read_column'" "read_row", and "read_sub_array" The advantage to the user is the

ability to interact with the file system in application terms - in this example a special object which
efficiently reads and writes 2D files - rather than just one-dimensional streams of bytes The

implementations of files can be optimized for a particular data structure, by storing the data in sub-
arrays, or by scattering the data to multiple devices to provide parallel I/O. Note that these
characteristics can be set on a file-by-file basis, unlike most current parallelfilesystems.

271

• User specification of caching and prefetch strategies. This feature allows the user to exploit

application domain knowledge about access patterns and locality to tailor the caching and prefeteh

strategies to the application. For example, the user may know what data she might read minutes in
advance.

• Active simulations. In addition to passive files, persistent objects may also be active entities. For

example, a factory simulation can proceed at a specified pace (e.g., wall clock time) and can be

accessed (read) by other objects. Of course the factory simulation may itself use and manipulate other

objects.

Transparent Remote Execution

A slightly more complex service is that of transparent remote execution. Consider a user working on a

code. After setting up the initial data for a run, she is left with the problem of deciding where to execute the

code. She might choose to run it on her workstation (if it has sufficient resources), or on a local high
performance machine, or on a remote workstation farm, or on a remote supercomputer. The choice

involves many trade-offs. Which choice will result in the fastest turn-around? Today, a user must usually

check each potential machine by hand to guess the turn-around time.

Next, there are the inconveniences of using remote resources. Data and executable binaries may first need

to be physically copied to a remote center, and the results copied back for analysis and display. This may be
further complicated by the need to access input data from a collaborator. Finally, the user must recall how

to use the local queuing system; there are 25 different ones in use [3]. These inconveniences are usually so
great that most users pick one site and infrequently consider moving. Finally, there are the administrative
difficulties of acquiring and maintaining multiple accounts at multiple sites.

In a metasystem, the user can simply execute the application at the command line. The underlying system
selects an appropriate host from among those the user is authorized to use, transfers program binaries, and
begins execution. Data is transparently accessed from the shared persistent object space, and the results are

stored in the shared persistent object space for later use. A queuing system could be used, in order to create

a wide-area queuing system, extending today_ local queuing systems.

Wide-Area Parallel Processing

Another opportunity presented by metasystems is connecting multiple resources together for the purpose of

executing a single application, providing the opportunity to run problems of a much larger scale than would
otherwise be possible. Not all problems will be able to exploit this capability, since the application must

tolerate the latency involved in crossing a building or crossing the country.

First, let_ consider a parameter space study. In a parameter space study, the same program is repeatedly
executed with slightly different parameters. The program may be sequential or parallel. For example, a

convergence study might involve running the same code repeatedly with different grid sizes, or with

slightly perturbed initial values. These sorts of problems are sometimes called 'bag of tasks" problems,
since all the runs are independent.

Bag-of-tasks problems are well suited to metasystems because they are highly latency tolerant. While one
computation is being performed, the results of the previous computation can be sent to the results bag, and

the parameters for the next computation can be retrieved from the input bag. Furthermore, the computations
can be easily spread to a large number of sites (using Legion_ remote execution capability), because the
computations do not interact in any way.

272

[] []

[]

Figure 2. Bag-of-tasks. The master places work units containing parameters for the workers into th0

tasks bag. Workers take work from the bag, perform the required computation, place the results into
another bag, perhaps used by other workers as input, and retrieve another piece of work. This
continues until all of the work has been completed. Note that there may be more than one master.

Consider next a more complex class of problems, such as an extremely large ocean model! Suppose that

we wish to use two distributed memory MPPs and a visualization system at different sites for a single run.

All 3 sites are connected by a fast network running at 155 megabits per second. (Figure 3). Further suppose
that the first host has twice as many processors as the second does. Balancing the load requires that the

problem be decomposed in such a manner that the first host has twice as much of the data as the second. (In
general, the scheduling problem can become extraordinarily complex, so a simple example is used here to

illustrate the point.)

Figure 3. Two geographically separated distributed memory MPP_ connected by a high-
speed link. The user sits at a visualization station at a third site. The hosts may be the same

or have different processors and interconnection networks

1 Most ocean codes are 3D, but are decomposed in 2D.

273

i

I
;

1
1

1
]
i

i
i

i
i
t ;

Host 1 Host 2

Boundary layer

I Figure 4. One possible decomposition of a 2D grid between two MPPL The thick I

!

line represents the boundary layers that must be sent between hosts. I
Given the decomposition shown above and informationon the sizeof the zones,we can estimatethe

bandwidth requirementsof the communications channel.Suppose thatthe problem is 10,000 by 10,000

zones,and each zone communicates with its4 immediate neighborsonly once per cycle,and each zone

containsI00 bytesofdata.Then one megabyte ofdatamust be transferredover thewire ineach direction

foreach cycle.Assuming coast-to-coastcommunication and a 155 megabitchannel,thetime totransmitthe

boundary layerisatleast50 ms. For some applications,such as thosewhich use an implicitsolverand

transferinformationmany times duringa cycle,thatislikelyto be too long. But for others,50 ms is
acceptable,especiallyifcommunication can overlapwith computatio_

Meta-Applications

The most challenging class of applications for the mctasystcm is recta-applications. A recta-application is a
multi-component application, many of whose components were previously executed as stand-alone

applications.

"iN
.::':i:

i'_'_
-%_$
11_I:

._::tl

iF._r
i_!il"

Component 1

Shared memory

Fortran

Component 2
MPI/C

I Component 3Cray Fortran

(vector)

A generic example is shown above. In this example three previously stand-alone applications have been
connected together to form a larger, single application. Each of the components has hardware affinities.

Component 1 is a fine grain data parallel code that requires a tightly coupled machine such as anSGI
Origin 2000, component 2 is a coarse grain data parallel code that can run efficiently on a '_ile of PCs"

2 Deciding the partition and placement of cells on processors can be difficult to get right if done by hand,

but fortunately there are tools for making those decisions [4]. The issue of dynamically changing the
partition and placement has not been solved.

274

machine, and component 3 is a non-parallelized but vectorizable code that "wants" to run on a vector
machine such as Cray T90. Component 1 also uses a very large database that is physically located at site 1.

Component 3 is written with Cray Fortran extensions, component 1 is written inHPF, and component 2 is

written in C usingMPI calls.

There are many difficult issues involved in this example. The fn-st is that data is often geographically
distributed - it is often stored physically close to the people who collect it, not necessarily the people who

use it. Today_ coupled models usually require all the data to be copied to a single location. The challenge

to the metasystem is to help determine when it makes sense to move the computation to the data, and when
it makes sense to move the data to the computation.

Next, scheduling the recta-application onto the hardware is a significant challenge. Consider scheduling our

example meta-application on a single distributed memory machine. We would like each component to

progress at the same rate, so we might need to assign different numbers of processors to each. Second, the

component tasks must be mapped to the processors in such a manner as to reduce the communication load
- random placement may lead to communication bottlenecks. Finally, the computational requirements of

the components may vary over time, requiring dynamic re-partitioning of resources.

,o
O

Component 1 iO

O
Component 2 10

O
Component 3 10

Figure 6. One possible mapping of three data-parallel components onto an MPP. I
Now suppose that instead of a fixed number of processors on an MPP to choose from, we must choose
between a large number of diverse systems, each connected to the others by networks of widely varying
capability 3. It is easy to see that the scheduling problem is a significant challenge.

As the number of hosts and processors in a computation increase, the mean time to failure falls. Today_
large machines are less reliable than the machines used 5 years ago; collections of workstations have

always presented a fault tolerance challenge. The metasystem should provide transparent fault tolerance

whenever possible.

3 Just determining network characteristics is non-trivial in a metasystem. Unlike an MPP, which is often not
shared, the wide-area network is usually shared, resulting in large variances in both bandwidth and latency.

Predicting network performance [5] is a critical componen of the metasystem scheduling problem.

275

Summary

Metasystems technology is rapidly maturing. Three years ago at Supercomputing 95, the I-Way was a one-
time stunt that demonstrated a large number of applications that had been constructed in anad hoc fashion.
Today, metasystems testbeds are operational on a full-time basis. As the technology matures further and
becomes hardened enough for production use, we hope to see a significant increase in computational
scientists'productivity.

Metasystems will provide users with a transparent, distributed, shared, secure, and fault-tolerant
computational environment. With a metasystem, users will be able to share files, computational objects,
databases, and instruments. No longer will they have to manually decide where to execute their programs
and copy the necessary binaries and data files: the metasystem will do those jobs. New classes of
applications, meta-applicaZions, will be enabled by the new infrastructure, further increasing users'
efficiency and productivity.

Acknowledgments: This work partially supported by DARPAfNavy) contract # N66001-96-C-8527, DOE
grant DE-FD02-96ER25290, DOE contract Sandia LD-9391, Northrup-Grumman (for the DoD
HPCMOD/PET program), DOE D459000-16-3C and DARPA (GA) SC H607305A. The authors would
also like to thank Sarah Parsons Wells for her editing assistance.

References

1. A. Grimshaw and W. Wulf, "The Legion Vision of a Worldwide Virtual Computer,"

Communications of the ACM, pp. 39-45, vo]. 40, number 1, January, 1997.

2. E. Levy, and A. Silberschatz, 'Distributed File Systems: Concepts and Examples,"

ACM Computing Surveys, vol. 22, No. 4, pp. 321-374, December, 1990.

3. J.A. Kaplan and M.L. Nelson, "A Comparison of Queueing, Cluster, and Distributed

Computing Systems," NASA Technical Memorandum 109025, NASA LaRC,
October, 1993.

4. J. B. Weissman, A.S. Grimshaw, "A Framework for Partitioning Parallel

Computations in Heterogeneous Environments ", Concurrency: Practice and

Experience, pp. 455-478, Vol. 7(5), August, 1995.

5. R. Wolski, 'Dynamically Forecasting Network Performance to Support Dynamic

Scheduling Using the Network Weather Service," 6_h IEEE Symposium on High

Performance Distributed Computing, 1996.

276

Impact of Commmunication Protocol on Performance

Patrick H. Worley

Oak Ridge National Laboratory

P.O. Box 2008

Oak Ridge, Tennessee 37831-6367

email: worleyph@ornl.gov

phone: ÷1 423 574-3128

Fax: +1 423 574-0680

1. Introduction. On previous generation MPP systems, interprocessor communi-

cation often represented a significant fraction of the runtime of production parallel

codes, and the choice of communication transport layer and communication protocol

were important steps in porting and tuning application codes. Processor, network,

and transport layer performance continue to improve, and the sensitivity of perfor-

mance to these !mplementation issues needs to be reexamined.

In this paper we use the PSTSWM parallel application code to examine

1) single processor performance,

2) peak achievable point-to-point communication performance,

3) performance variation of kernels as a function of communication protocols,

4) performance of vendor-supplied collective communication routines, and

5) performance sensitivity of full code to choice of parallel implementation

for the SGI/Cray Research T3E and Origin 2000, using both the MPI [2] and SHMEM

libraries to implement interprocessor communication. While other researchers have

looked at communication performance on these machines (e.g., [1]), this study differs

in that we examine the effect on peformance of an application code.

2. PSTSWM. The Parallel Spectral Transform Shallow Water Model (PSTSWM)

is a message-passing parallel benchmark code and parallel algorithm testbed that

solves the nonlinear shallow water equations on a rotating sphere using the spectral

transform method. PSTSWM was developed by the author and by I. T. Foster at

Argonne National Laboratory from the serial code STSWM, written by J. J. Hack and

R. Jakob at the National Center for Atmospheric Research. PSTSWM was used to

evaluate parallel algorithms for the spectral transform method as it is used in global

atmospheric circulation models.

PSTSWM has characteristics that make it useful for performance studies. It makes

interesting and varied demands on the communication subsystem, multiple parallel

algorithms are embedded in the code, and multiple message-passing transport layers

are supported. See http://www.epm, ornl. gov/chammp/pstswm/±ndex.html for a

277

partial bibliography of the performancestudiesutilizing PSTSWM.

3. Platforms. We focus on the T3E and Origin2000in thesestudies,but include
measurementsfrom the followingplatforms to aid in the understandingof the results.

Intel Paragon XP/S 150 at Oak Ridge National Laboratory.

This machine has 1024 MP nodes (3 50-MHz iPSC/860 processors per node).

Measurements were taken in January, 1998. Only one processor per node was

used for computation. KAI math routines were used.

CRI T3D at Cray Research in Eagen, MN.

This machine had 128 150-MHz DEC Alpha EV4 processors. Measurements were

taken in August, 1996.

IBM SP2 at NASA Ames Research Center.

This machine had 160 RS6000/590 nodes ("wide", 66.7 MHz POWER2). Mea-

surements were taken in August, 1996. ESSL math routines were used.

Convex SPP-1200 at the National Center for Supercomputer Applications.

This machine has 64 120-MHz HP PA-RISC 7200 processors (8 Hypernodes).

Measurements were taken in September, 1996.

SGI/CR T3E-900 at the National Energy Research Scientific Computing Center.

This machine has 532 450-MHz DEC Alpha EV5 RISC processors. Measurements

were taken in January, 1998.

HP/CONVEX SPP-2000 at the National Center for Supercomputer Applications.

This machine has 64 180-MHz HP PA-RISC 8000 processors (4 Hypernodes).

Measurements were taken in April, 1998. VECLIB math routines were used.

Intel PII-266 cluster at Oak Ridge National Laboratory.

This machine has 10 266-MHz dual Pentium II nodes. Measurements were taken

in February, 1998. LINUX and Portland Group f77 compiler were used.

SGI/CR Origin2000 at Los Alamos National Laboratory.

This machine has 128 195-MHz MIPS R10000 processors. Measurements were

last taken in April, 1998. SCSL math routines were used.

4. Serial Performance. Table 1 contains the MFlop/sec rates for one processor runs

of the code PSTSWM for a number of different problem sizes. PSTSWM computes

the solution by timestepping, advancing the approximation to a new timelevel (in

simulation time) by using the approximations at the two previous timelevels. The

computational complexity and code executed for a timestep in PSTSWM are identical

for all timesteps.

We use the standard benchmark problem for the shallow water equations, global

steady state nonlinear zonal geostrophic flow [3], and two problem size classes: T42

278

and T85, characterizedby the following computationalgrids and complexity.

T42
T85 physical grid I

64 x 128
128 x 256

Fourier grid
64 x 64

128 x 128

spectral coefficients

946

3741

flops per timestep

4129859

24235477

There is also a vertical component to the problem size. For example, T42L16 is a

T42 horizontal grid with 16 vertical levels. The complexity of solving the problem is

linear in the number of vertical levels.

64-bit precision floating point computation is used in all experiments. Math library

routines are used for the Fourier transforms where available, as indicated in the

description of the platforms in the previous section.

Intel Paragon

CRI T3D

IBM SP2

Convex SPP-1200

SGI/CR T3E-900

HP/Convex SPP-2000

Intel PII-266 cluster

SGI/CR Origin2000

T42L1 T42L3 T42L16 T85L1 T85L3

13.9 14.0 13.9 13.1 13.1

25.2 25.7 23.3 24.9 24.4

98.3 98.3 91.0 107.7 102.4

24.9 23.2 22.9 24.2 24.0

79.4 70.0 64.1 84.7 70.7

138.8 107.3 83.5 117.5 114.2

45.4 37.2 30.3 38.9 33.7

153.0 140.8 92.5 131.7 130.1
TABLE 1

Serial MFlop/sec rates.

Prom this data it is clear that the serial performance of MPP processors has generally

improved over the past few years, and that optimized math libraries are important

performance enhancers. Also note that some effects of the memory hierarchy on

performance can be observed from the variation in MFlop/sec rate as the problem

size varies.

5. Point-to-Point Communication Performance. Communication overhead is

best measured in the context of the full code, but it is useful to establish a per-

formance baseline by determining the "peak achieveable" point-to-point interpro-

cessor communication performance. Performance-critical interprocessor communica-

tion in PSTSWM is implemented using two basic types of commands: SWAP and

SENDRECV. The message-passing transport layer used to implement these com-

mands is specified at compile time, while the protocol used is specified at runtime.

279

To characterizethe basiccommunicationcapabilities in terms relevant to PSTSWM,
we usethe PSTSWM SWAP command. We measurethe time required to exchange
26214464-bit floating point numbersbetween two neighboringprocessors,varying
the protocol used for the exchangeto find the minimum. We refer to theseas the
2MB experiments.We alsomeasurethe time to swap 1024and 1638464-bit values,
referring to theseas the 8KB and 128KB experiments,respectively.

Two generalclassesof protocols are used: unordered (ping-ping) and ordered (ping-

pong). While not all protocols are available for all message-passing transport layers,

they are drawn from those described in Table 2. Examples are given using MPI

commands. Note that the examples have been simplified (to save room) and do not

accurately represent the MPI implementations.

Table 3 contains the maximum observed bandwidth and typical SWAP overhead ("la-

tency") for the corresponding communication protocol. (Note that this protocol does

not necessarily have the smallest latency.) The following observations on communi-

cation performance on the T3E and the Origin2000 can be drawn from this summary

data:

• The T3E and the Origin2000 demonstrate significant performance improvement

over previous generation MPPs of like architecture. (Note however that the SPP-

2000 performance is better than both, for these particular tests.)

• SHMEM achieves considerably higher bandwidth and lower latency than MPI,

but MPI performance is still an improvement over what was achieveable on earlier

systems.

Looking at the raw timing data, we can also determine the sensitivity of performance

to the choice of communication protocol. On the T3E the achievable bandwidth

shows little sensitivity to the communication protocol when using MPI, and the sim-

ple protocols are generally slightly better. On the Origin2000, MPI performance is

somewhat more sensitive to the communication protocol, but the communication pro-

tocol is still not too important. This is a significant difference from earlier results on

the Intel Paragon and the IBM SP2, but is similar to the T3D results, and appears

to reflect the SGI/CR implementation of MPI. When using SHMEM, the variability

is higher (for both systems).

6. Parallel Algorithm Performance. Some indication of the impact of communi-

cation protocol on performance can be seen from the point-to-point communication

tests, but it is difficult to use these results to predict the effect on application code

performance. Here we examine this issue in more detail, looking at the effect on the

performance of specific parallel algorithm options in PSTSWM.

280

Unordered

(0,0):simple

Processors1 and 2

MPI.BSEND

MPI_RECV

(0,1): nonblocking send

Processors 1 and 2

MPI_ISEND

MPI..P_ECV

(0,2): nonblocking receive

Processors 1 and 2

MPI_IP,.ECV

MPI_SEND

(0,3): nonblocking send & receive

Processors 1 and 2

MPI_IRECV
MPI..ISEND

(0,4): ready send

Processors 1 and 2
MPIIRECV

MPI_P, SEND

(0,5): nonblocking ready send

Processors 1 and 2

MPI_IRECV

MPI_IRSEND

(0,6): native sendrecv
Processors 1 and 2

MPI_SENDRECV

Ordered

(1,0): simple

Processor 1 Processor 2

MPI_SEND MPI_RECV

MPLRECV MPI_SEND

(1,1): nonblocking send

Processor 1 Processor 2

MPI.ISEND MPI_RECV

MPI.RECV MPI_SEND

(1,2): nonblocking receive

Processor 1 Processor 2

MPI_IRECV MPI_RECV
MPI_SEND MPI.SEND

(1,3): nonblocking send & receive

Processor 1 Processor 2

MPI_IRECV MPI_RECV

MPI_ISEND MPI_SEND

(1,4): ready send

Processor 1 Processor 2

MPI_IRECV MPI_RECV

MPI_RSEND MPLRSEND

(1,5): nonblocking ready send

Processor 1 Processor 2

MPI..IKECV MPI.P_ECV

MPI_n_SEND MPI_RSEND

(1,4): synchronous

Processor 1 Processor 2

-- MPLRECV
MPI.SEND --

-- MPI_SEND
MPI_RECV --

TABLE 2

SWAP protocols (simplified).

281

Paragon
: MPI

: NX
: SUNMOS

T3D
: SHMEM

SP2

: MPI

SPP-1200

: MPI

T3E-900

: MPI

: SHMEM

SPP-2000

: MPI

Origin2000
: MPI

: SHMEM

Paragon
: MPI

: NX

: SUNMOS

T3D

: SHMEM

SP2

: MPI

SPP-1200

: MPI

T3E-900

: MPI

: SHMEM

SPP-2000

: MPI

Origin2000
: MPI

: SHMEM

2MB

BW lat. prot.

73 82 C0,6)
76 32 (0,3)
293 63 (0,3)

163 19 (0,2)

96 136 (0,4)

45 104 (0,4)

286 30 (0,2)
543 7 (0,1)

654 39 (0,6)

142 39 (0,1)
287 15 (0,1)

2MB

BW lat. prot.

116 75 (1,0)
116 50 (1,0)
154 35 (1,0)

126 12 (1,2)

71 74 (1,1)

29 27 (1,3)

163 29 (1,6)

336 9 (1,2)

541 20

126 33

166 8

Unordered

128KB

BW lat. prot.

70 136 (0,3)

71 83 (0,3)

245 24 (0,0)
494 7 (0,1)

629 15 (0,6)

128 29 (0,6)

222 14 (0,1)

Ordered

128KB

BW lat. prot.

107 105
114 62

134 20

340 5

(1,0) 547 9

(1,5) 98 17

(i,I) 140 8
TABLE 3

(1,3)
(1,o)

w

(1,0)

(1,2)

(1,0)

(1,3)

(I,I)

8KB

BW lat. prot.

48 139 (0,3)

57 74 (0,3)

m -- --

66 25 (0,2)

258 7 (0,1)

145 23 (0,2)

57 30 (0,1)

114 12 (0,2)

8KB

BW lat. prot.

52 82 (1,0)
75 52 (1,0)

m -- --

47 21 (1,0)

210 5 (1,2)

158 5 (1,0)

4o 17 (1,o)
71 10 (1,2)

Peak observed bandwidth (MBytes//sec) and latency (microseconds) for optimal protocol.

282

In the spectral transform method used in PSTSWM, fields are transformed at each

timestep between the physical (longitude-latitude-vertical) domain and the Fourier

(wavenumber-latitude-vertical) domain using Fourier transforms in the longitude di-

rection, and between the Fourier and spectral (spectral coefficients - vertical) do-

mains using a Legendre transform in the latitude direction. All parallel algorithms

in PSTSWM are based on decomposing the different computational domains onto

a logical two-dimensional grid of processors, PXxPY. In each domain, two of the

domain dimensions are decomposed across the processor grid, for example, assign-

ing longitude-latitude patches of the physical domain to individual processors, but

leaving one domain dimension undecomposed.

Two general types of parallel algorithms are used in PSTSWM: transpose and dis-

tributed. In a transpose algorithm, the decomposition is "rotated" before a transform

begins, to ensure that all data needed to compute a particular transform is local to a

single processor. In a distributed algorithm the original decomposition of the domain

is retained, and communication is performed to allow the processors to cooperate in

the calculation of a transform.

Three transpose algorithms are examined, each of which is functionally equivalent to

MPI_ALLTOALLV:

• srtrans: sends P-1 messages using SENDRECV to transpose across P processors;

• swtrans: sends P-1 messages using SWAP to transpose across P processors;

• logtrans: sends O(log P) messages using SWAP to transpose across P processors.

Each of these are options for both the parallel Fourier and parallel Legendre trans-

form algorithms. Here we restrict our study to transpose-based parallel Fast Fourier

transform algorithms. One distributed Fast Fourier transform is also examined:

• dfft: sends O(logP) messages using SWAP to calculate Fourier transform dis-

tributed across P processors.

The distributed Legendre transform algorithms in PSTSWM are based on the evalua-

tion of distributed vector sums. Four distributed vector sum algorithms are examined,

the first three of which are functionally equivalent to MPI_ALLREDUCE:

• exchsurn: an exchange-based algorithm implemented using SWAP;

• halfsum: a recursive halving-based algorithm implemented using SWAP;

• ringsum: a ring-based algorithm implemented using SENDRECV;

• ringpipe: a pipeline-based algorithm implemented using SENDRECV.

Each of these algorithms can be implemented using the protocols described in Ta-

ble 2. Two different types of implementations are also supported. The first uses the

basic SWAP and SENDRECV commands to exchange the data. The second reorders

283

the elementsof the SWAP or SENDRECV protocol in an attempt to overlap com-

munication with computation and to hide communication latency. These algorithms

and protocols are described in more detail in [5]. The overlap algorithms using un-

ordered and ordered communication protocols will be designated by (2, x) and (3, x)

respectively, where x E (1, 2, 3, 4, 5, 6}.

To examine the performance issues in these different implementation options, we run

the following experiments. We use one-dimensional decompositions of the form 8xl or

lx8 and 32xl or lx32, where the first decomposition in each pair is for examining par-

allel Fourier transform algorithms, and the second is for examining parallel Lengendre

transform algorithms. The problem sizes are based on T42L16 and T85L32 as they

would appear on a two-dimensional processor grid of size 8x8, 16x32, or 32x16. This

is accomplished by modifying the problem size to achieve the desired granularity

(problem size per processor), and allows us to examine the performance for problem

granularities that are typical of what would be seen in practice.

Results are presented in Table 4. The first column is the overall best protocol for each

parallel algorithm. Multiple protocols are given when no single protocol is good for all

problem sizes and numbers of processors. The other columns indicate how much per-

formance is lost by using the MPI_SENDRECV-based protocol instead of the optimal

MPI protocol and by using the optimal MPI protocol instead of the optimal SHMEM

protocol. Note that these are total runtimes, and that the indicated performance loss

is a function of both the size of the messages and the communication/computation

ratio for a given experiment.

From this data it is clear that there is no reason to use anything but (0,6) on the T3E if

using MPI, but that significant performance gains are possible if the SHMEM library

is used instead. Note that, unlike with MPI, the overlap algorithms are optimal for

some of the SHMEM experiments, indicating that overlap logic can be useful with

this architecture if the message-passing library supports it.

On the Origin2000, the conclusions are less clear. While (0,6) is rarely optimal, it is

a good choice for all but a few cases. For those few cases, however, it should not be

used. Similarly, MPI is competitive with (or better than) SHMEM in most cases, but

MPI performs much worse than SHMEM for son,..-_ of the smaller granularity cases.

7. Full Simulation Performance. Efficient parallelizations of PSTSWM exploit

two-dimensional decompositions of the domain, parallelizing both the Fourier and

Legendre transforms. Here we consider two classes of parallel algorithms.

• DTH: double transpose for the Fourier transform and halfsum for the Legendre

284

dirt
exchsum

halfsum

logtrans

ringpipe

ringsum

srtrans

swtrans

opt. protocols

(0,6),(2,2)
(0,6)
(0,6)
(0,6)
(0,6)
(0,6)
(0,6)
(0,6)

dfft

exchsum

halfsum

logtrans

ringpipe

ringsum

srtrans

swtrans

opt. protocols

(0,1),(3,3)
(0,4),(0,6)
(o,1),(0,5)
(0,s),(1,1)
(2,1),(2,2)

(o,1)
(0,1)
(0,1)

P

T42

o%
0%
0%
o%
o%
o%
2%
1%

T3E

t(0,6),mpi--topt,mpi

topt

=8

T85

8%
O%
O%
0%
O%
O%

O% i
O%

Origin2000
t(o,6),mpi--topt,mpi

topl mpl

P---8

T42 T85

1% 22%

0% 20%
1% 0%

o%_ 9%
6%j 4%

2%1 1%

o%1 0%
1%{ 0%

,mpi

P=32

T42 T85

0% 0%
o% o%
o% o%
1% o%
o% o%
o% o%
o% o%

io% 0%

Effect of protocol on

P-32

T42 T85

0% 10%

0% 48%

5% 27%

0% 3%

1% 3%

1% 4%

0%1 1%

0%1 1%
TABLE 4

performance of parallel

$opt_mpi--toptvshmem

$opt,ghmern __

'18% 6% '

7% 3%

7% 2%
16% 7%

14% 4%

11% 3%

17%1 5%

17%, 5%

54% 18%
30% 16%

39% 11%
82% 20%
75% 39%
87% 24%

121% 27%
143% 29%

topt ,mpi --topt,$hmem

topt

P----8

T42 T85

7% 7%
-4% 0%
3% 2%
6% 14%

0% -5%
0% -9%

-1% -3%

0% -3%

shmem

P = 32

T42 T85

-4% -10%

-11% 32%

5% -5%
59% 23%

78% 3%

93% -7%

115% 35%

116% 37%

algorithms.

transform. The double transpose algorithm uses a transpose to serialize the

Fourier transforms, then another transpose to return to a domain decomposition

analogous to the original. This approach has the best load balance among the

parallel algorithm options, halfsum is the best MPI_ALLREDUCE-equivalent

algorithm on the T3E and the Origin2000.

• DR: dfft/ringpipe. This parallel aglorithm combination has good load balance,

requires the minimum storage, and has the maximum potential for communica-

tion/computation overlap.

DTH and DR stress the underlying transport mechanisms in significantly different

ways, and represent different tests of the communication protocol sensitivity. Due to

their good load balances, the performance differences between them reflect primarily

the differences in communication costs.

285

For eachplatform wemeasurethe runtimes when solving T42L16 and T85L16 using

• opt: the best transpose algorithms (for DTH) and the best communication pro-

tocols for each parallel algorithm, determined empirically,

• gen: srtrans (for DTH) and (0,6)-based parallel implementations, and

• coil: MPI collective communication routines MPI_ALLTOALLV and

MPI_REDUCEALL (for DTH),

for logical processor meshes of sizes: 4 x 4, 4 x 8, 8 x 8, 8 x 16, 16 x 16, and 16 x 32.

Algorithms gen and coll represent the typical algorithm choices if nothing is known

about the communication protocol sensitivities. Measurements are also taken using

8 x 14 for DR and 14 x 8 for DTH, since the 128 processor experiments do not run

efficiently on a 128 processor Origin2000 (due to competition with system processes).

Results are presented in Table 5. The optimal times are given for both MPI and

SHMEM implementations. Additionally, the performance degradation (if any) is

given for using the gen and coil implementations instead of the optimal MPI imple-

mentation.

• T3E results. For DTH, gen is the best MPI implementation except for the

smallest granularity cases. In those two cases coll is the best, but coil is an erratic

performer in general. For DR, gen is never the best, and it is worthwhile searching

for the optimal MPI protocol. But the optimal SHMEM implementations are

faster than the optimal MPI implementations in all cases, and often significantly

SO.

• Origin2000 results. For DTH, gen is a reasonable choice for the T42L16 cases,

but the optimal MPI protocols are worth identifying for the T85L16 cases, coil is

never a good choice. For DR, gen is a poor choice, and it is worthwhile searching

for the optimal MPI protocols. The optimal SHMEM implementations are faster

than the optimal MPI implementations only for the largest granularity cases. In

the other cases, the optimal MPI implementations are consistently better.

8. Summary. Both the T3E and the Origin2000 results indicate the importance

of considering the interprocessor communication protocols when tuning performance,

but the similarity in the results ends there. On the T3E, performance is optimized by

using the SHMEM communication library. On the Origin2000, optimization should

include both the communication library (MPI or SHMEM) and the particular protocol

used in the implementation. Disappointingly, the collective communication-based

implementation coil is not competitive on either platform, which is consistent with

earlier evaluations on other parallel platforms [4].

286

T3E

alg. prot. library] 4x4 4x8 8×8 8×14 8×16 16x16 16×32

DTH opt MPI
opt SHMEM

DR opt MPI
opt SHMEM

T42L16runt_

30.9 14.8 7.4 4.5 4.1 2.5 2.0
29.6 13.9 6.5 3.5 3.2 2.0 1.2
23.6 12.5 7.3 6.9 5.7 4.4 -
22.2 11.2 6.0 5.2 4.0 2.8

DTH opt MPI
opt SHMEM

DR opt MPI
opt SHMEM

T85L16 rtmtimes
311.3 149.8 69.8 38.6 36.2 20.6 12.4
304.6 144.3 65.6 36.4 33.4 17.0 9.4
228.9 116.3 61.7 39.1 37.4 21.5 18.9
221.1 110.8 57.0 35.7 29.5 16.9 12.6

DTH gen MPI
coll MPI

DR gen MPI

T42LI6

0%

1%

5%

MPIpefformancesensitid_
0% 3% 0% 0% 17% 13%
5% 0% 7% 7% 0% 0%
8% 3% 2% 4% 2%

DTH gen MPI
coU MPI

DR gen MPI

T85L16 MPIpedormance
0% 0% 0%
1% 6% 5%
12% 7% 4%

sensiti_ty
0% 0% 0% 0%
17% 16% 2% 23%

4% 7% 8% 7%

Origin2000

alg. prot. library I 4x4 4x8 8x8 8x14 8x16 16x16 16x32

DTH opt MPI

opt SHMEM

DR opt MPI

opt SHMEM

T42L16 runtimes
17.5 9.9 5.9 4.9
18.7 10.4 6.0 -
18.3 10.3 6.8 6.2
18.6 10.6 7.2 7.6

DTH opt MPI
opt SHMEM

DR opt MPI
opt SttMEM

T85L16 rtmtimes
250.9 126.4 52.5 42.6
244.1 112.7 54.8 -
250.6 122.5 56.2 40.1
234.0 104.8 56.4 54.5

DTH gen MPI
coll MPI

DR gen MPI

T42L16
0%
28%
36%

MPIpefformancesensiti_ty
1% 3% 4%

37% 14% 16%
18% 3% 5%

DTH gen MPI
coll MPI

DR gen MPI

T85LI6 MPI perfomance
2% 5% 13%
11% 30% 120%
14% 35% 92%

sensitivity
17%

111%
24%

TABLE 5

Runtimes o] 5 day simulations o.f PSTSWM (seconds) and performance degradation from using gen

and coil algorithms: (tgen,mpi -- topt,mpi)/topt,mpi and (tcoU,mp i -- topt,mpi)/topt,mp i.

287

9. Acknowledgements. This research was supported by the U.S. Department

of Energy under Contract DE-AC05-96OR22464 with Lockheed Martin Energy Re-

search Inc. We thank NASA-Ames for access to their SP2 system, and Cray Research

for access to a T3D system. We thank the Advanced Computing Laboratory at Los

Alamos National Laboratory for access to the SGI/Cray Research Origin2000. The

Intel XP/S 150 MP Paragon operated by the Center for Computational Science at

ORNL is funded by the Department of Energy's Mathematical, Information and Com-

putational Sciences Division of the Office of Computational and Technology Research.

Access to the CONVEX Exemplar SPP-1200 and the HP/CONVEX Exemplar SPP-

2000 was supported by the National Center for Supercomputing Applications, Uni-

versity of Illinous at Urbana-Champaign under grant number ASC960028N. Access to

the SGI/Cray Research T3E-900 at the National Energy Research Scientific Comput-

ing Center was supported by the Environmental Sciences Division, U.S. Department

of Energy.

REFERENCES

[1] G. R. LUECKE, J. J. COYLE, AND W. UL HAQUE, Comparing communication performance o]

MPI on the Gray Research T3E-600 and IBM SP-2, Performance Evaluation and Modelling

of Computer Systems, (1997). http://hpc-journals.ecs.soton.ac.uk/PEMCS/.
[2] MPI COMMITTEE, MPI: a message-passing interface standard, Internat. J. Supercomputer Ap-

plications, 8 (1994), pp. 165-416.
[3] D. L. WILLIAMSON, J. B. DRAKE, .]..]. HACK, R. JAKOB, AND P. N. SWARZTRAUBER, A

standard test set for numerical approximations to the shallow water equations on the sphere,

Teeh. Report ORNL/TM-11773, Oak Ridge National Laboratory, Oak Ridge, TN, 1991.
[4] P. H. WORLEY, MP1 performance evaluation and characterization using a compact applica-

tion benchmark code, in Proceedings of the Second MPI Developers Conference and Users'

Meeting, IEEE Computer Society Press, Los Alamito6, CA, 1996, pp. 170-177.

[5] P. H. WOLSEY AND B. TOONEN, A users'guide to PSTSWM, Tech. Report ORNL/TM-12779,
Oak Ridge National Laboratory, Oak Ridge, TN, July 1995.

288

Parallelization Agent: A Knowledge-based System

Suraj C. Kothari

Computer Science Department

Iowa State University, Ames, Iowa 50011
Emaikkothari@cs.iastate.edu

Phone: +1 515 294-7212

Abstract: Parallelization Agent (PA) is a knowledge-based system forparallelizing 3-

dimensional, time marching, explicit finite difference science codes. It The MM5,

RAMS, RADM and a couple of other codes have been parallelized with help of the PA.

It was possible to parallelize the MM5 code in two weeks as opposed to several years it

took for manual parallelization by a team of expert programmers.The PA provides a

customized but flexible environment forparallelizing atmospheric science codes. It

supports portable higher level abstractions that simplify the process of parallel

programming by automating tedious details of parallel programming and hiding low level

architectural details. The PA has an interactive capability for exchanging information

about specific applications. This interaction is closer to the way application program

methods are understood and communicated by humans.

1. Introduction

Parallel computing can provide the computational resources to perform large-scale

simulations needed in atmospheric and environmental sciences. Johnson et al [1] report

results of a regional prediction model run on a parallel computer, and Kim et al [2]

discuss speed-up and load balance for an implementation of the Penn State/NCAR MM5

model on 64 processors. However, there are major hurdles in applying parallel computing

to run legacy codes in atmospheric sciences. Manualparallelization is tedious, prone to

errors, and very time consuming.

Difficulties in manualparallelization point to a need for automation. Several automatic

and semiautomatic tools have been developed. Doreen Cheng has published an extensive

survey [3] with 94 entries for parallel programming tools out of which 9 are identified as

"parallelization tools to assist in converting a sequential program to a parallel program."

A full automation ofparallelization process requires solutions to problems that are known

to be NP-complete (intractable in a technical sense). The emphasis of recent research has

been on developing interactive tools requiring assistance from the user.

The Parallelization Agent (PA) [4,5], developed at Iowa State University, is a tool for

developing efficient parallel programs based on the message-passing programming

model. As opposed to parallelization of arbitrary programs, the PA is centered on a key

numerical method to provide a customized but flexible environment for building parallel

physical science simulation codes. We have used the PA toparallelize several

atmospheric codes. At the Athens conference, we demonstrated parallelization of MM5

and RAMS using the PA. Using MM5 as the example, this paper describes capabilities of
the PA and demonstrates how it is used.

289

2. Parallelization Agent (PA)

So far, the research is predominantly focused on automaticparallelization of arbitrary

sequential programs. The PA shifts the focus to specific classes of codes that are based on

numerical methods for modeling a broad range of physical phenomena. By focusing on a

class of problems, the class-specific high-level knowledge can be used to simplify the

otherwise intractable problem of automaticparallelization. Historically, a similar shift in

focus has occurred in the domain of artificial intelligence when expert systems were

introduced. While the problem of developing anintelligent program is too difficult in

general, the idea of expert systems has proved to be fruitful in addressing important

problems of special interest.

The PA development takes a pragmatic approach by automating tedious and time

consuming tasks rather than striving towards complete automation. For example, it is

very difficult to automate recognition of the algorithmic form. The knowledge about the

algorithmic form is crucial for processing complex codes. A programmer, for instance,
will first find out that the model is based on thefinite difference method (FDM) and then

use knowledge about the FDM to proceed with parallelization. The PA follows a similar

process. To identify the underlying numerical method, it relies on the user.

The programming model is thesingle program multiple data (SPMD) model with

message passing for inter-processor communication. The current version of the PA

handles FORTRAN 77 codes. The PA employs a structured process that relies on specific

knowledge about the numerical method to arrive at an efficient parallel program. The PA

currently supports parallelization of 3-dimensional time marching explicit finite

difference codes. The PA system runs on Unix workstations and PCs running under the

Linux operating system.

2.1 Capabilities

The PA is envisioned as a part of the computational infrastructure to enable advances in

physical science simulation problems. The PA can be useful in multiple ways. In addition

to parallelization, it can be used to diagnose serial code or to display different type

information about serial or parallel codes. It can assist application scientists in

discovering important information about a code without having to go through it line by

line. Atmospheric scientists will find the following capabilities useful:

Diagnostic facility

Each individual source file can be diagnosed. The PA can point out various problems

such as: data exchange patterns not consistent with the differencing scheme, ambiguous

uses for loop indices. The PA provides auxiliary information and specific references in

the code to resolve these problems. The auxiliary information, for example, will show the

indexing patterns that are causing the ambiguity. The diagnostic facility is interactive and

allows exchange of information between the user and the PA. The PA indicates if a

290

sourcefile is readyforparallelization.If not, theuserhasto respondto theproblems
identified by thePA.
Display of call-order tree

The PA traces the sequence of subroutine calls and displays thecall-order tree. This

helps the user to understand the structure of the code. After parallelization, the call-order

tree includes markings to show the subroutines that will have communication.

Selective Parallelization

The user can parallelize either the selected subroutine only or all routines that are called

from the selected routine. The selective process allows the user to view the effects of

including subroutine calls. The PA does inter-procedural analysis and shows additional

communication that may be introduced due to subroutine calls.

Display of Code Blocks

ParaUelization results in breaking the given code into separate blocks with

synch/exchange points between successive blocks. The PA shows the sequence of blocks.

The user can click on a block to see the serial code corresponding to that block. A display

of code blocks helps the user to understand the relationship between the serial and

parallel codes.

Display of Communication Stencils

The PA determines the data exchange patterns at each of the synch-exchange points. The

user can view these patterns in the form of stencils showing the communication that will

occur in parallel processing. Application scientists find these stencils particularly

valuable because they also show thedifferencing scheme at work.

Automatic Parallelization

The diagnostic phase requires assistance from the user and may take a couple of weeks

for a large code like MM5. However, the parallelization itself is automatic and quick. The

PA does global-to-local index transformations necessary to convert the serial code into a

parallel code. It identifies the communication requirements, optimizes communication,

and inserts the message passing primitives in appropriate places. The PA allows three

options for generating the actual parallel code: run-time system library, MPI, or PVM. At

present, the first option is operational.

Graphical Interface

The user can interact with the PA system through a graphical interface. By click of a

button the user can select a file, diagnose source code, view the call-order tree, parallelize
selected files etc.

291

2.2 Using the PA

In this section we describe the mechanics of using the PA. The steps are as follows:

1. As observed earlier, the PA makes use of class-specific information to process the

code. The user has to first identify the class of the code to be processed. This is done

by selecting one class from the choices given by the PA. For MM5, RAMS and other

codes based on the finite difference method, the user needs to select the FDM class.

2. Next the user gives the pathname for the code directory, identifies the key indices

from the specific code, and provides a high-level parallel mapping. The interface for

providing this information is shown in Figure 1.
3. The user can first view the call-order tree for the specified code and decide on the

routines to be processed.

4. The user must diagnose the selected routines before they can beparallelized. To

diagnose a routine the user selects the routine from a menu.
5. If a selected routine has a problem, the PA displays the problem on a screen. To

resolve the problem, the user may have to either provide auxiliary information about

certain array variables or make changes to the serial code. The PA provides specific

references to locations in the code and other information to assist the user in resolving

the problems.

6. After an attempt to resolve the problem, the user can diagnose the selected routine

again and the PA indicates if the routine is ready forparallelization. If the user tries to

parallelize a routine before resolving the problems, then theparallelization fails. The
current version of PA indicates that the parallelization failed but does not provide any

additional information. In this situation the user needs to go back to the diagnostic

phase.
7. Once all the selected routines are diagnosed the user can proceed to the parallelization

phase. The user can choose to parallelize only the selected routine or all the routines

called by it. The parallelization is automatic. The call-order tree is traversed from

bottom up during parallelization. The routines at the lowest level of the call-order tree

are processed first and the routine at the root is processed last.

8. The user can identify the routines where communication occurs by viewing the call-

order tree. The PA marks these routines during parallelization.

9. The user can check where the synch-exchange points are inserted by invoking the PA

to display the code blocks. The user can click on a block to see the serial code

corresponding to that block.
10. The user can view the communication at a synch-exchange point by selecting the

synch exchange point and clicking the stencil button.

11. Finally, the user can generate the parallel code by clicking a button. The PA displays

three options: run-time system library, MPI, and PVM. The first option is operational

at present.

3. Parallelization of MM5

As an experiment, we used the PA to parallelize MM5. Thesolvel.f and all the

underlying subroutines wereparallelized. The parallel code generated by the PA was

292

comparedwith thecodedevelopedby expertprogrammers.Herewe describeour
experienceofparallelizing theMM5 codeusingthePA. To provide a concrete

illustration, actual displays from the PA are reproduced.

To start the process, we identified MM5 as a finite difference code. We wanted the

parallel MM5 to map the three-dimensional domain onto a two-dimensional array of

processors so that the computations in a column of nodes are assigned to a single

processor. The same mapping is used in manualparallelization [2,6]. The MM5 code uses

indexes i,j along the horizontal plane andk along the vertical direction. To direct the PA

to follow the desired mapping, the user needs to identify/andj as the indices for

parallelization. The directive is conveyed to the PA, as shown in Figure 1.

The call-order tree for MM5 is shown in Figure 2 C. The call-order tree was used to

identify the subroutines called bysolvel.f. These subroutines were diagnosed. It took two

weeks for one person to complete the diagnostic phase.

_t_T

Figure 1: Initial information given to the PA

We observed that the problems detected during this phase arose from two main sources:

aliased array variables and ambiguous or inconsistent indexing. For exampleU1 (j, k) is

used as an alias for U(1 ,j, k). One situation for ambiguity is that an array is indexed by

constants and it is not clear from the context if the array is supposed to be indexed by/or

j. The displays for call-order tree, selecting a file for diagnosis, and diagnostic

information from the PA are shown in Figure 2.

293

[]

!

J

_ _ -_- _'_

u_

I

a. Call order tree b. Selecting a _e for diagnosis
c. Diagnostic information

Figure 2: Diagnostic Phase of the Parallelization Agent

After the routines are diagnosed, the next step is parallelization. Theparallelization is

automatic and very fast. For solvel.f and all its subroutines, it takes a minute or so.

During this process, the PA determines the synch/exchange points and the inter-processor

communication at each of the synch/exchange points. The results ofparallelization can be

viewed through a graphical interface. As shown in Figure 3a, theparallelization of

solvel.fresulted in six blocks of code separated by synch/exchange points. The serial

code corresponding to a block can be viewed by clicking on that block. The stencil for

one of the communication points is shown in Figure 3b. The stencils are observed by

clicking the stencil button and selecting a synch/exchange point.

The final step is generating a parallel code. This step involves global-to-local index

transformation to modify loops in the serial code and insertion of communication

primitives. Prior to this stage, the PA has determined the communication pattern, and the

objective at this stage is to take care of the lower-level details of communication. The PA

is designed to support different alternatives including MPI for handling the details of

communication. Currently, the PA supports a modified version of the run-time system

library [7] developed at Argonne National Laboratory.

294

c_ueks

i 1
IIIIIII _=l.] I

[1
r

1
,,,_ ,

E

a. Parallel code blocks b. Stencils showing communication

Figure 3: PA Displays showing information about parallel MM5

3.1 Observations

The parallel code produced by the PA has six synch/exchange points as opposed to

three for the code developed by expert programmers [2, 6]. Without any optimization

the code has hundreds of synch/exchange points. Thus, the PA came very close to

human experts in minimizing the synch/exchange points. Moreover, we found that it

is not too time consuming to do the further reduction by hand to get to from six to

three synch/exchange points.

The PA approach is very helpful in eliminating debugging of parallel code. The

manual process is prone to errors. In a large and complex code such as MM5 that
involves hundreds of variables, more that hundred source code files and thousands of

lines of code, debugging the parallel code is very difficult. The PA uses a formal and

automated method that eliminates errors inherent in a manual approach. However,

one must ensure that the PA is given correct information when it detects a problem

and asks for additional information during the diagnostic phase. We obtained some of

this information by talking to the application scientist. As opposed to spending effort

on debugging parallel code, the PA approach is more amenable to high-level

reasoning and leads to better understanding of the code that is likely to be useful for

maintaining the code in the long run.

The PA dramatically reduced the amount of time and effort. It took a team of

programmers more than three years to complete the parallelization of non-hydrostatic

version of MM5. With the help of the PA, a single person completed the

parallelization of the MM5 code in two weeks.

295

I

a. Selecting a communication library

_ol

|I " IimJ_l)

b. Parallel code

Figure 4: Generation of parallel code

4. Conclusions

The Parallelization enables efficien_parallelization of legacy codes in atmospheric

sciences. It automates tedious and time-consuming parts of theparallelization process. It

eliminates commonly encountered errors in the manualparallelization of large and

complex codes. It supports portability by producing parallel codes that can run on a

variety of distributed memory platforms. The PA can produce scalable parallel codes for

massively parallel computing. The PA approach will facilitate management and

evolution of complex codes. Often parallel models cannot keep pace with advances in the

serial model because of the prohibitively long time it takes tqaarallelize serial models.

The PA will be an effective tool to address this problem.

The PA can be enhanced to extend its applicability and usefulness. The PA is based on

class-specific approach and it can be enhanced to incorporate other classes. Currently

efforts are underway to create similar tool for codes based on the finite element method.

There is also a need for providing an affordable parallel solution. It will help many

countries to take advantage of advances in atmospheric sciences to plan growth and

manage resources. With the advent of powerful and relatively inexpensive PCs, a cluster
of PCs can be a reasonably good medium for parallel computing. We are currently

experimenting with the PA on a cluster of PCs.

296

References

1. Johnson, K., J. Bauer, G. Riccardi, K. Droegemeier, and X. Xue, Distributed

processing of a regional prediction model, Mon. Wea. Rev., 122, 2558-2572, 1994.

2. Youngtae Kim, Zaitao Pan, Eugene S. Takle, and Suraj C. Kothari, Parallel

Implementation of the Hydrostatic MM5, 8th SIAM Conference on Parallel

Processing for Scientific Computing, 1997.

3. Cheng, A Survey of Parallel Programming Languages and Tools, Tech. Rep. RND-

93-005, NASA Ames research center, Moffet Field CA 94035, 1993.

4. Simanta Mitra, Suraj C. Kothari, Parallelization Agent: A New Approach to

ParalIelization of Legacy Codes, Eighth SIAM Conference on Parallel Processing for
Scientific Computing, March 1997.

5. Simanta Mitra, Parallelization Agent." A New Approach to Parallelization of Legacy

Codes, Ph.D. thesis, Computer Science Department, Iowa State University, December
1997.

6. Michalakes, J., 1997b: MM90: A Scalable Parallel Implementation of the Penn

State/NCAR Mesoscale Model (MM5), Parallel Computing (to appear); also preprint
ANL/MCS- P659-0597.

7. Michalakes J., RSL: A parallel runtime system library for regular grid finite

difference models using multiple nests, Tech. Rep. ANL/MCS-TM-197, MCS

Division, Argonne National Laboratory, Argonne, Illinois, 1994.

8. http://www.cs.iastate.edu/-hpc: Information on Parallelization Agent

297

298

DEEP: A Development Environment for Parallel Programs

Brian Q. Brode and Chris R. Warber

Pacific-Sierra Research Corporation
2901 28 th Street, Santa Monica, CA 90405

info@psrv.com
+1 310 314-2300

Abstract

The use of the DEEP development environment to analyze parallel program performance

is described. The full integrated environment contains tools for the creation, analysis

and debugging of parallel programs. All information is related back to the original

parallel source code. This paper describes the program analysis portion of DEEP and

describes its use on parallel programs with distributed memory (message passing with

MPI, data parallel with HPF and Data Parallel C), and shared memory (automatic

parallelization and OpenMP).

1. Introduction

The DEEP system provides an integrated parallel program development environment that

binds debugging and performance tools back to the original parallel source code. DEEP

includes many useful tools in a highly interactive integrated GUI interface, and it

provides a simple and intuitive way to understand and investigate parallel program

structure, performance, and behavior.

The goal of the system is to support parallel programming for the most frequently used

languages and target systems, in the same framework. To this end, DEEP supports both

distributed and shared memory parallel programming, and both Fortran and C languages,

within a single DEEP executable. Having a single system that supports all of these

parallel programming models and languages provides great flexibility for the user. Most

parallel programmers should benefit from the system.

1.1 Distributed Memory Programming.

Distributed memory parallel computer systems can range from networks of workstations

or even PCs to large-scale massively parallel computer systems designed for efficient

inter-processor communication. Programming for distributed memory systems is often

done with explicit message passing systems (such as MPI) or data parallel languages

(such as HPF or Data Parallel C). DEEP supports both of these programming methods.

299

1.1.1MPI-2 Support

The MPI-2 message-passing interface [1] allows the user to write a portable distributed

memory program with a rich set of calls to allow the interchange of information between

processors.

DEEP keeps track of all MPI-2 calls in a Fortran or C program, and highlights and

profiles these in the program analysis tools; this allows a better understanding of the

performance characteristics of MPI codes. Debugging of MPI-2 programs can be a

challenge, as several groups of processors can be working on different calculations in

parallel; the DEEP debugging interface allows the user to see what is happening in each

parallel group.

1.1.2 Data Parallel Language Support

Data parallel programming allows the user to concentrate on the higher level aspects of

the decomposition of the program data across the available processors, while the

compilation system performs all the low-level bookkeeping and provides for all of the

communication needed between processors. Data parallel programming languages

include High Performance Fortran[2], which is an emerging standard first proposed in

1993, and the Data Parallel C Extensions (DPC)[3], accepted as a technical report in 1994

by the X3J11 ANSI C Committee. DEEP works with both HPF and DPC programs[4],

and can even support mixed language Fortran/C applications

Data parallel languages have two distinguishing features: syntax for describing the

distribution of data across processors, and a method for making clear the parallel nature

of calculations. HPF has a set of directives that allow specification of data distribution

and DPC has "shape" declarations for this purpose. Both HPF and DPC have array

syntax, which allows entire arrays of data to be manipulated with single statements.

Critical to the performance of data parallel codes is whether calculations are successfully

partitioned across processors, and where the data parallel compiler had to add message-

passing code. The DEEP system provides feedback to the user so that performance

problems can be quickly identified.

When debugging of data parallel programs, the user would like to treat the program as a

single executable, and the DEEP debugging interface makes this possible.

300

1.2 Shared Memory Programming

For shared memory systems, DEEP supports Fortran and C programs that are being

automatically parallelized[5], and programs that are being parallelized by hand with the

recently specified OpenMP[6] set of directives. DEEP for SMP targets systems that

support threads, such as the POSIX threads standard, and the system works on both
UNIX systems and Windows/NT.

1.2.1 Automatic Parallelization Support

With DEEP, users of automatic parallelization can quickly see what loops have been

parallelized and what loop nests have been put into parallel regions. This allows the user

insight into the compiler's actions and the performance that results.

1.2.20penMP Support

OpenMP is a large set of directives that allow the user to direct parallelization of a code.

DEEP keeps track of OpenMP constructs and profiles the execution of OpenMP codes so

that the user can see the effect of using the directives on the performance of the

application.

1.3 Using DEEP

DEEP program analysis tools allow use of both compile-time information (gathered by

the compilers) and run-time information (gathered by a run-time profiling library) to

investigate a parallel program in more detail. In analyzing a program with the DEEP

system you would normally start with the tools that look at the whole program, identify

procedures of interest, and then "drill down" with tools that look at the internal structure

of individual procedures.

2. The DEEP Framework

The DEEP system generates an abundance of information about a parallel program.

Presenting this type of information in a coordinated package can be a significant

challenge to user interface design. DEEP is organized around a single GUI framework

that organizes and displays the wealth of information provided by the system. The DEEP

framework is organized into user-configurable panels that contain "viewers". Each

viewer in turn contains pages that hold the information.

Panels can be reconfigured by grabbing and moving. Normally, a user will have three to

five panels open. When the size of one panel is changed, the other panels automatically

301

readjust themselves accordingly. We find this arrangement much easier to deal with than

many independent windows popping up all over the screen. Also, a panel can be

expanded to fill the whole DEEP window, then restored to its previous configuration;

this is easy to do through a right-click pop-up menu.

Within these panels are viewers, a viewer being a software tool for examining some

aspect of a parallel program. Viewers can be docked in any panel or popped into their

own window. Viewers in a panel or pages in a viewer are selected with a click of a

button. Figure 1 shows a DEEP display with three toolbars (along the top) and four

panels. Tabs along the bottom of the panels select viewers inside the panel; tabs at the

top of each panel select between pages in a viewer.

Figure h DEEP Framework

302

Threetoolbarscanbeseennearthetop of Figure 1. Toolbarscontainbuttonsthat invoke
variousfunctions. The buttonscontainhelp tips, which is useful if the icon doesnot
clearly bring to mind the function to be performed. The toolbarscan be draggedto
dockingareasat thetop,bottom,left andrightof thepanels.

3. DEEP Program Views

This section examines the DEEP program analysis tools that display some aspects of the

whole program. These tools are the starting point for understand program structure and

performance.

3.1 Program Information Table

DEEP allows you to inspect the program as a whole in various forms. For inspection of

raw data gathered from compiling and executing the program, the program information

tables are the place to start; they list each of the procedures in the program with various

statistics. The statistics display are customized based on the target system -- different

statistics are displayed for an MPI code than for an OpenMP code, for example. For an

MPI program, statistics about message-passing are paramount; for OpenMP, statistics

about parallel regions are important.

There is a compile-time table that shows information gathered from compile-time

analysis and optimization of the program, such as the number of parallel loops. The run-

time information table lists CPU time, wallclock time, number of messages passed,

number of calls, number of loops executed, average iteration count, etc. There is also an

inclusive runtime table which has data for the indicated routine and all routines it calls.

Finally, there is a loop table that presents all of the instrumented loops in the program.

The tables can be sorted on any field, and procedures of extra interest can be highlighted

by user-selected criteria. Procedures that are not of interest can be pruned. Selecting a

procedure in the table (by clicking with the mouse) brings up detailed information about

the procedure in other panels.

The buttons in the tool bars at the top of the display can be used to launch other views of

the program as well. The example in the upper right quadrant of Figure 1 shows three of

the time-related fields in the program table; by default, the table is sorted by wallclock

time and all procedures that use more than 10% of the wallclock time are highlighted.

303

3.2 Call TreeViewer

The call tree display allows browsing of the call relationships of the procedures. Any

procedure can be set as the root, and both calling trees (down to leaf procedures) and

called trees (back to the main procedure) can be browsed. If runtime data is available, the

trees are annotated with inclusive time and (for distributed memory targets) message

counts. This performance annotation helps direct the browsing of the tree to branches

that used the most resources.

h 126.68_ec.

_initaI: 0.74sec..

-_e12. Z43_04 _e.,

----* catel: 53.46 see:,

_-- _ 521£ sex::..

caleSz 0.08_ec..
t..-_ talc3: 18.9[2_c..

I

120"J£messages

36 messa__

0 me_es

3890 m_age_

3408_

0 m_s_.ages

4752

Figure 2: Call Tree View

IIII

The tree can be expanded or contracted at each level by clicking on the + and - icons (see

Figure 3). When you get to a point in the tree where you would like to have more

information, you can use the tool bars to move directly to detailed displays, or the source

code, of the selected procedure.

3.3 Whole Program Viewer

With the whole program viewer, the entire program can be examined on one screen, with

color-coded lines of pixels representing performance of source lines in each subprogram.

Each procedure is represented by a rectangle which is proportional to the number of

source code lines. The lines of pixels represent the individual lines of code, and are

indented to correspond to control structures in the original source (loops, conditional

blocks, etc.). Lines can be color-coded based on compile-time optimization feedback (for

example partitioned loops in blue, non-partitioned loops red) or on run-time

instrumentation (lines colored coded based on the amount of time spent there).

Clicking on any pixel in a rectangle brings up the corresponding source line in the source

code editor, and also establishes that area in the code abstract viewer for that procedure.

304

This allows you to move quickly from the high-level program information to specific

information about an area of the program.

In Figure 3, DEEP uses static performance information from a data parallel compiler to

color-code lines in each procedure, based on how well they were compiled for parallel

execution. Source lines that result in inefficient code (messages need to be passed to

other processors) are highlighted at the red end of the spectrum; source lines of loops that

are partitioned cleanly (with minimal message passing) across the parallel processors are

highlighted at the blue end of the spectrum (see the key at the top of the window in Figure

4). Other colorings of the whole program display are possible, including ones based on

dynamic performance information.

i l.I iiii

Figure 3: Whole Program View

A

te
[

lelliee

3.4 Summary Charts

Several summary charts are prepared, based on the target parallel system. The charts can

include the wall clock time by procedure and the breakdown of total messages passed by

procedure. These let the user quickly see where the resources are being spent in the

parallel program. These charts are presented as colored pie charts or bar graphs.

3. 5 Load Balance Displays

The message load balance display and the CPU load balance display are intended to give

information on how the computational load is distributed. Is one processor sending most

of the messages or doing most of the processing? If so, then you may want to reconsider

how you have distributed the data. For instance, a block-cyclic approach may provide

better load balance than a pure block distribution on a data parallel program. For SMP

programs, low utilization of the last few threads may indicate that the program can get by
with less threads.

305

An exampleof a messagebalancedisplay for a dataparallel program run on four
processesin seenin Figure4. Thedisplayshowsthe numberof sendsandreceivesfor
eachlogical process.

Figure 4 - Message Load Balance

4. DEEP Procedure Views

When a procedure of interest is determined by examining the program-level views, you

can move to the more detailed procedure-level displays.

4.1 Code Abstract Viewer

The code abstract viewer allows the programmer to examine routines with an overview

of important control structures. This view is annotated with optimization notes from the

data parallel or SMP compiler. From this display, you can move to the corresponding

line in the source code editor with a click of the mouse. The display is color-coded to

provide performance feedback at a glance. The lower left quadrant of Figure 1 shows

part of the abstract for a routine. OpenMP directives and MPI calls are preserved in the
Code Abstract View.

Figure 6: SymbolViewer

306

4.2 Symbol Viewer

You can track the uses and definitions of variables throughout the parallel program with

the symbol viewer. In the lower right quadrant of Figure 1 various kinds of symbols can

be seen. Symbol information including scope and attributes is available. The file of

definition is displayed, and if clicked on will bring up this file in the editor.

The global symbol page lets you see where global symbols are set and used across

procedures and files. This can be very useful in large programs.

]
Set: wa_v_5,f}5282

Us_ v._eve5,f/'5283

U_ weve5.f,,'5289

U_e: v-_ve5..V5291

Se,':weve5..V5370

U_: w_v_5.f.,'5.371

: :"
: :

Figure 7- Symbol References

Clicking on the "References" column brings up a new page that lists all references of a

variable, and allows the user to move through these references with the click of a button.

As each reference is selected, the corresponding line of code is displayed in the source
code editor.

4.3 Performance Viewers

The loop performance viewer and call performance viewer present tabular information on

the details of a procedure's performance. This performance information is gathered

during run-time at the individual loop and call level. The loop performance viewer

combines compile-time loop optimization information with measured run-time

performance.

I_igure _- Loop _l_le

307

For MPI-2, there is an MPI viewer that summarizes information about the execution of

MPI calls in the current procedure.

5. DEEP Debugging Tools

DEEP also provides run-time interactive GUI-based debugging of parallel programs at

the source code level. A demonstration screen snapshot of the debugger interface can be

seen in Figure 9. DEEP's debugger was designed so that the programmer can debug the

source code at the level of abstraction most natural for the type of parallel program. Tools

include:

• Source Code Viewer. Shows the execution location in the source code. Features

language-sensitive syntax highlighting, and interactive symbol browsing and variable

value inspection.

• Inspection, Watch and Locals viewers. DEEP provides several viewers that display

the value of variables. Simple variables are best displayed in Watch viewers, and

structured variables in Inspection viewers. The Locals viewer is similar to the Watch

viewer, showing all active variables in their context. The variables to be watched or

inspected can be selected by dragging from any other viewer, such as the Source Code

Viewer or the Symbol Browser.

==nc",=_e <_aC_.h,> intc_[er_ntr-5 !oa',t-<5$7.cn_,'_bu'ffer-'HefloVVonc._
u:_z'_ u_¢: "£.2

// prec.=plier entrles a._e in _r
// resez-ve_ wo_s are bo!_ :,_J II

// th'.nss that can be v=ewe_. "_n -""

// "_hznss that can be browsed at: ---"

ii hyperl'-nks are underline/ --,,
// mor__en_s are :.c dark ._ed --'

{

float :S._Aq ;

co_st float p_ - 3.14159265;

o _ h:_ - s_,n (pcoord (S.O)*W_J)

NemeITy_e ivy,, _, ITs.. I ,.'ae ,_,,_ ITY_. IV_
p_ c_nstfloa_ 3.14159255 ;m _nst flo_ 3/;4159Z8! [C']b;_ fioa: O.OOO

: : o_ snu_e E (3,3Co,3,3": .: o:: f:ce',:sn._;e S ,'_.3CL_ 31 :,_._" 1':33_2SZ""

I_e: _nst _oa', 8,00B2331 d;I con_IIo_,, 0,00_283]8 l_lb_: lloat C.O7_5653;

Figure 9 - Debugging Snapshot

308

• Graphical array viewers. Multidimensional distributed arrays can be visualized using

two and three-dimensional graphical tools.

• Breakpoints. Both conditional and unconditional breakpoints are supported.

Breakpoints can be set with a single click.

• Watch points. Watch points suspend execution when the value of a variable changes.

• Trace points. When a trace point is reached in the source code, user selected

expressions are displayed in the program log viewer.

• Performance Zones. You can establish performance zones in the source; the system

can display the CPU time, wall clock time, messages sent or received, and I/O done

by each process in each zone.

• Processor Status. The current state of all the processors is shown by its color in the

processor status viewer. In addition, detailed information about individual processes

can also be displayed.

In order to support different types of parallel programs DEEP uses the concept of a

processor set. A processor set can contain all processors that are running the same

executable. Users are free to define their own processor sets, and a set can contain only

one processor. DEEP's viewers display information gathered from the current processor

set. For example, since Data Parallel programs are normally viewed as a single object,

the most natural processor set contains all the processors. Thus, the programmer can

view the code in as if it were a single executable. Arrays that might be distributed over a

number of processors are treated by the debugger as single object. The de-bugger handles

the tasks of assembling the parts of array from the individual processors when the

programmer views or manipulates values in the array. The debugger makes sure that the

processor that make up a set are kept in synchronization when breakpoints are triggered

and during single stepping.

Processor sets are created by the DEEP debugger according to the type of parallel

program. The user can modify DEEP's sets and create other sets by dragging processor
icons into set icons. The user can also create toolbars that show the state of the sets or of

individual processors. In Figure 9, DEEP is being used to debug a data parallel program

running on eight processors. The toolbar along the right side of the display uses colors to

display the state of each processor within the single processor set. If the debugging

session contained other processor sets, the user has the choice of displaying a toolbar for

each set. In addition, a summary toolbar showing one icon for each set can be displayed.

Breakpoints, trace points, etc. are set on all the processors in the current processor set.

The easiest way to set a breakpoint is to right click in the breakpoint area (the gray left

border of the source code viewer shown in Figure 9) and selecting the desired type from

the popup menu displayed. Figure 10 shows the dialog shown to set a conditional

breakpoint.

309

Figure 10, Edit Breakpoint Dialog.

Performance zones are designed to allow the user to time areas of the code. A

performance zone is made up of two performance points. The performance point that

starts the zone, called the start point, is denoted by • in the breakpoint area, and the

point that ends the zone, the stop point, is denoted by A. The user ties a pair of points

together by giving each the same name. The user may assign colors to the performance
zone.

When the user code reaches a performance point messages may be logged in the message

log viewer and the program time line viewer. The color of the performance point tags the

message display. If the point is the start point of a zone then the following timers or

counters may be started:

• The CPU timer.

• Message received counter.

• Message sent counter.

• I/O counter.

The user code then continues execution. If the point is the stop point of a zone, the timer

and or counters are stopped and appropriated messages can be sent to the message log
and/or the time line.

Figure 11 shows the dialog box used to define a performance point in a C program. In this

figure, we are also showing the select color dialog box.

310

Figure 11. Performance Point Editing Dialog, with the color selection dialog.

The source code viewer is fully integrated with the rest of the debugger. In the Figure 12,

the right mouse button has been clicked over a variable name, which cause a pop up menu

to appear with details about the variable. Also shown in the figure is a blue triangle

which indicates the next source code line to be executed, and the pink bar shows where a

temporary breakpoint has been set.

Variable names can be dragged from the source code viewer onto other viewers where

appropriate. For example, if a name is dropped on to a watch or inspector window, the

value of the variable will be displayed during execution. Names can also be dropped onto

the browser window, which will cause the browser to display its information about the
variable.

i

ilcta t : _" :..'¢ :

'_z,¢ " "_-" :t_" !_

Figure 12. Source Code Browser

311

6. Future Work

DEEP is planned to include tools that allow the user to see what is happening in the

system as the parallel program executes (parallel program monitoring tools). The user

will be able to visualize the current status of processors, message traffic, and calculations.

These tools are currently in development.

Since DEEP supports both Data Parallel and SMP models, extending it to support

hybrid/cluster/NUMA and other such systems seems to be a natural progression.

7. Acknowledgments

This work received support from DARPA.

DEEP is a trademark of Pacific-Sierra Research Corporation.

References

[1] MPI-2: Extensions to the Message-Passing Interface, Message Passing Interface Forum, July 18, 1997.

[2] High Performance Fortran Language Specification, HPF Forum, Version 2.0, 10/19/96

[3] Data Parallel C Extensions, Numerical C Extensions Group of X3Jll, DPCE subcommittee, Version 1.6,

X3J11/94-080, 12/31/94

[4] VAST-DPC User's Guide, Version 1.2, March 1997, Pacific-Sierra Research Corporation.

[5] VAST-2/Paraltel User's Guide, Version 2.0, February 1998, Pacific-Sierra Research Corporation.

[6] OpenMP Fortran Application Program Interface, Version 1.0, October 1997

312

313

314

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Venkatramani Balaji

Silicon Graphics/Cray Research

Geophysical Fluid Dynamics Laboratory
P.O. Box 308

Princeton NJ 08542

Phone Number: (609) 452-6516

Fax Number: (609) 987-5063

Email: vb@gfdl.gov

Bertrand Denis

Canadian Centre for Climate Modelling and Analysis
P.O. Box 1700

Victoria, BC, Canada V8W 2Y2

Phone Number: (250) 363-8245

Fax Number: (250) 363-8247

Email: bdenis @ec.gc.ca

Tom Bettge

National Center for Atmospheric Research
1850 Table Mesa Drive

Boulder, CO 80303

Phone Number: (303) 497-1371

Fax Number: (303) 497-1348

Email: bettge @ ucar.edu

Mike Desgagne
RPN-AES, Environment Canada

2121 Trans-Canada Highway, 5th Floor
Dorval, Quebec, Canada H9P 1J3

Phone Number: (514) 421-4750

Fax Number: (514) 421-2106

Email: michel.desgagne @ec.gc.ca

Ilene Carpenter

Silicon GraphicsdCray Research
655E Lone Oak Drive

Eagan, MN 55121

Phone Number: (612) 683-3629
Fax Number: (612) 683-3699

Email: ilene @cray.com

Chris H.Q. Ding

National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory, Bldg. 50F
Berkeley, CA 94720

Phone Number: (510) 486-6901

Fax Number: (510) 486-5548

Email: cding @nersc.gov

Lang-Ping Chang

DAO, GSFC, NASA
Code 910.3

Goddard Space Flight Center

Greenbelt, MD 20771

Phone Number: (301) 805-6998
Fax Number: (301) 805-7960

Email: lpchang @dao.gsfc.nasa.gov

Jeff Durachta

International Business Machines

3624 Delverne Road

Baltimore, MD 21218

Phone Number: (410) 889-9967

Emaih jdurachta @toad.net

Samson Cheung
NASA/Ames Research Center

Mail Stop 258-6
Moffett Field, CA 94035

Phone Number: (650) 604-2875

Fax Number: (650) 604-4377

Email: cheung @nas.nasa.gov

Name: Gerald Embery

Bureau of Meteorology Australia
GPO Box 1289K

Melbourne, Victoria 3001, Australia
Phone Number: +61 3 9669-4417

Fax Number: +61 3 9669-4660

Emaih G.Embery @bom.gov.au

GirlChukkapalli

San Diego Supercomputer Center
P.O. Box 85608

San Diego, CA 92186-5608
Phone Number: (619) 534-5072

Fax Number: (619) 534-5117

Email: giri@sdsc.edu

John D. Farrara

University of California, Los Angeles
Department of Atmospheric Sciences

405 Hilgard Avenue

Los Angeles, CA 90095-1565

Phone Number: (310) 825-9205

Fax Number: (310) 206-5219

315 Email: jfarrara@ ucla.edu

SecondInternationalWorkshoponSoftwareEngineeringandCodeDesign
inParallelMeteorologicaland Oceanographic Applications

Jing Guo

NASA/Goddard Space Flight Center
Code 910.3

Greenbelt, MD 20771

Phone Number: (301) 805-8333

Fax Number: (301) 805-7960

Email: guo @dao.gsfc.nasa.gov

Rodney James

National Center for Atmospheric Research
P.O. Box 3000

Boulder, CO 80307

Phone Number: (303) 497-1271

Fax Number: (303) 497-1286

Email: rodney @ ncar.ucar.edu

Steve Hammond

National Center for Atmospheric Research
P.O.Box 3000

Boulder, CO 80307

Phone Number: (303) 497-1811

Fax Number: (303) 497-1286
Email: hammond @ ncar.ucar.edu

Jay Jayakumar

NAVO/MSRC PET Program

Bldg. 1103, Room 248

Stennis Space Center, MS 39529

Phone Number: (601) 688-3518

Fax Number: (601) 688-2764

Email: jkumar@navo.hpc.mil

George Heburn
Naval Research Laboratory
NRL Code 7306

Washington, DC 20375

Phone Number: (202) 404-1437

Fax Number: (202) 404-1662

Email: heburn@ nrl.navy.mil

Philip Jones
Los Alamos National Laboratory
T-3 MS B216

Los Alamos, NM 87545

Phone Number: (505) 667-6387

Fax Number: (505) 665-5926

Email: pwjones@lanl.gov

Richard Hemler

Geophysical Fluid Dynamics Laboratory
P.O. Box 308

Princeton, NJ 08542

Phone Number: (609) 452-6598

Fax Number: (609) 987-5063

Email: rsh @gfdl.gov

Wesley Jones

Silicon Graphics/Cray Research

2011 N. Shoreline, Bldg. MS 580
Mountain View, CA 94043

Phone Number: (650) 933-2992

FAX Number: (650) 932-2992

Email: wesley@sgi.com

Barry Herchenroder

SAIC/Goddard Space Flight Center

Ocean/Ice Branch, Bldg. 22
Greenbelt, MD 20771

Phone Number: (301) 286-5990

Fax Number: (301) 286-0240

Email: beh@janus.gsfc.nasa.gov

Christopher L. Kerr
International Business Machines

Geophysical Fluid Dynamics Laboratory
P.O. Box 308

Princeton, NJ 08542

Phone Number: (609) 452-6573

Email: ck@gfdl.gov

Mohamed Iskandarani

Institute of Marine and Coastal Sciences

Rutgers University

71 Dudley Road
New Brunwick, NJ 08901-8521

Phone Number: (732) 932-6555 x 251

Fax Number: (732) 932-8578

Email: mohamed @ahab.rutgers.edu

Suraj C. Kothari
Iowa State University

Computer Science Department
Iowa State University, 207 Atanasoff Hall

Ames, IA 50011

Phone Number: (515) 294-7212

Fax Number: (515) 294-0258

Email: kothari @cs.iastate.edu

316

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Jay Larson
University of Maryland

NASA/Goddard Space Flight Center

7501 Forbes Blvd., Suite 200
Seabrook, MD 20706

Phone Number: (301) 805-8334

Fax Number: (301) 805-7960

Email: jlarson@dao.gsfc.nasa.gov

Bob Malone

Los Alamos National Laboratory

Advanced Computing Laboratory, MS B287

Los Alamos, NM 87545

Phone Number: (505) 667-5925

Fax Number: (505) 667-5921

Email: rcm@lanl.gov

John M. Levesque

Applied Parallel Research
1723 Professional Drive

Sacramento, CA 95825

Phone Number: (916) 481-9891

Fax Number: (916) 481-7924

Email: levesque @apri.com

Joe McCaffrey

Naval Research Laboratory
Code 7300

Stennis Space Center, MS 39529

Phone Number: (228) 688-5008

Fax Number: (228) 688-2764

Email: mccaffrey@nrlssc.navy.mil

Greg Lindahl

University of Virginia

Computer Science Department, Thornton Hail
Charlottesville, VA 22903

Phone Number: (804) 982-2293

Fax Number: (804) 982-2214

Email: lindahl @cs.virginia.edu

James McGraw

Lawrence Livermore National Laboratory

P.O. Box 808, Mail Stop L-561

Livermore, CA 94550

Phone Number: (510) 422-0541

Fax Number: (510) 423-2993

Email: mcgraw 1@llnl.gov

Luke Lonergan

High Performance Technologies, Inc.

1875 Campus Commons Drive, Suite 200
Reston, VA 20191-1533

Phone Number: (703) 262-0654

Fax Number: (703) 758-7866

Email: llonergan @hpti.coln

Anthony Meys

Silicon Graphics/Cray Research
655E Lone Oak Drive

Eagan, MN 55121
Phone Number: (612) 683-3426

Fax Number: (612) 683-3699

Email: meys @tray.corn

Rob Lucchesi

Data Assimilation Office

NASAJGoddard Space Flight Center
Code 910.3

Greenbelt, MD 20771

Phone Number: (301) 286-9084

Fax Number: (301) 286-1754

Email: lucchesi @dao.gsfc.nasa.gov

John Michalakes

Argonne National Laboratory
Mathematics and Computer Science Division
9700 South Cass Avenue

Argonne, IL 60439

Phone Humber: (708)252-6646

Email: michalak@mcs.anl.gov

Hong Ma
Brookhaven National Laboratory

Department of Applied Science, Bldg. 490D

Upton, NY 11973
Phone Number: (516) 344-4138

Fax Number: (516) 344-3911

Email: hm@bnl.gov

Clark Mobarry

NASAJGoddard Space Flight Center
Code 931

Greenbelt, MD 20771

Phone Number: (301) 286-2081

Fax Number: (301) 286-1634

Email: clark.mobarry @ gsfc.nasa.gov

317

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

George Mozdzynski

European Center for Medium Range Forecasts
Shinfield Park

Reading, Berkshire RG2 9AX United Kingdom
Phone Number: +44-118-949-9113

Fax Number: +44.118-986-9450

Email: George.Mozdzynski @ecmwf.int

Kenneth Pollak

Fleet Numerical Meteorology and Oceanography Ctr.

7 Grace Hopper Avenue

Monterey, CA 93943

Phone Number: (408) 656.4335

Fax Number: (408) 656-4489

Email: kpollak @fnmoc.navy.mil

Philip Mucci

University of Tennessee

Department of Computer Science

Knoxville, TN 37996-I301

Phone Number: (423) 522-5211

Fax Number: (423) 974-8296
Email: mucci @cs.utk.edu

Joseph M. Prusa

Iowa State University

Department of Mechanical Engineering
Ames, IA 50011

Phone Number: (515) 294-0354

Fax Number: (515) 294-3261

Email: prusa@iastate.edu

Robert Numrich

Silicon Graphics/Cray Research
655 E Lone Oak Drive

Eagan, MN 55121
Phone Number: (612) 683-5481

Fax Number: (612) 683-3699

Email: rwn @cray.com

Frederick Rawlins

UK Meteorological Office

Numerical Modelling Division
London Road

Bracknell, Berkshire RG12 2SZ United Kingdom
Phone Number: +44 01344 856482

Email: frawlins @meto.gov.uk

Matthew O'Keefe

University of Minnesota

Department of Electrical and Computer Engineering
200 Union Street, S.E.

Minneapolis, MN 55455
Phone Number: (612) 625-6306

Fax Number: (612) 625-4583
Email: okeefe@ece.umn.edu

Tom Rosmond

Naval Research Laboratory

7 Grace Hopper Avenue, Stop 2

Monterey, CA 93943-5502

Phone Number: (408) 656-4736

Fax Number: (408) 656-4769

Email: rosmond@nrlmry.navy.mil

Mike O'Neill

Fujitsu Systems Europe

2 Longwalk Road, Stockley Park

Uxbridge, Middlesex

England, UB 11 lAB
Phone Number: +44-181-606.4573

Fax Number: +44-181-606-4580

Email: meon @fujitsu.co.uk

Bruce Ross

Geophysical Fluid Dynamics Laboratory
P.O. Box 308

Princeton, NJ 08542-0308

Phone Number: (609) 452-6504

Fax Number: (609) 987-5070

Email: br@ gfdl.gov

Steve Piacsek

Naval Research Laboratory
Code 7320, NRL-SSC

Stennis Space Center, MS 39529
Phone Number: (601) 688-5316

Fax Number: (601) 688-4759

Ernail: piacsek@ nrlssc.navy.mil

Ulrich Schaettler

Deutscher Wetterdienst

Kaiserleistrasse 42

63067 Offenbach, Germany
Phone Number: +49-69-8062-2739

Fax Number: + 49-69-8236-1493

Email: uschaettler @ dwd.d400.de

318

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Daniel Schaffer

NASA/Goddard Space Flight Center

Code 971, Bldg. 22
Greenbelt, MD 20771

Phone Number: (301) 286-3133

Fax Number: (301) 286-0240

Email: Dans @j anus.gsfc.nasa.gov

Dean Sumner

Los Alamos National Laboratory
MS D413

Los Alamos, NM 87545

Phone Number: (505) 667-0708

Fax Number: (505) 667-3726

Email: shd@lanl.gov

Jimmy Scott

Silicon Graphics, Canada
2550 Matheson Blvd. East

Mississauga, Ontario L4W 4Z1

Phone Number: (905) 282-8933

Fax Number: (905) 625-4476

Email: jcs @cray.com

Albert Semtner

Naval Postgraduate School

Oceanography Department

833 Dyer Road

Monterey, CA 93943

Phone Number: (408) 656-3267

Fax Number: (408) 656-2712
Email: sbert@ucar.edu

Steve Thomas

Recherche en Prevision Numerique
Environment Canada

2121 Trans-Canada Hwy, 5th Floor
Dorval, Quebec, Canada, H9P 1J3

Phone Number: (514) 421-4769

Fax Number: (514) 421-2106
Email: thomas @cerca.umontreal.ca

Alan Wallcraft

Naval Research Laboratory
NRL Code 7323

Stennis Space Center, MS 39529

Phone Number: (228) 688-4813

Fax Number: (228) 688-4759

Email: wallcraf@ ajax.nrlssc.navy.mil

Piotr Smolarkiewicz

National Center for Atmospheric Research
P.O. Box 3000

Boulder, CO 80307

Phone Number: (303) 497-8972

Fax Number: (303) 497-8181
Email: smolar@ ncar.ucar.edu

Chris R. Warber

Pacific-Sierra Research Corporation
2901 28th Street

Santa Monica, CA 90405

Phone Number: (310) 314-2340

Fax Number: (310) 314-2323

Email: cwarber @pacific-sierra.com

Gary Strand

National Center for Atmospheric Research

Climate and Global Dynamics Division/CCR
1850 Table Mesa Drive

Boulder CO 80303

Phone Number: (303) 497-1336

Fax Number: (303) 497-1348

Emall: strandwg@ucar.edu

Vince Wayland

National Center for Atmospheric Research
P.O. Box 3000

Boulder, CO 80303

Phone Number: (303) 497-1300
Fax Number: (303) 497-1348

Email: wayland@ucar.edu

Max Suarez

NASAJGoddard Space Flight Center
Code 913

Greenbelt, MD 20771

Phone Number: (301) 286-7373

Fax Number: (301) 286-1759

Email: Max.Suarez @gsfc.nasa.gov

Patrick Worley

Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012

Oak Ridge, TN 37831
Phone Number: (423) 574-3128

Fax Number: (423) 574-0680

Email: worleyph @ornl.gov

319

Second International Workshop on Software Engineering and Code Design

in Parallel Meteorological and Oceanographic Applications

Andrzej Wyszogrodzki

National Center for Atmospheric Research
P.O. Box 3000

Boulder, CO 80307

Phone Number: (303) 497-8981

Fax Number: (303) 497-8181
Email: andii @ucar.edu

320

Form Approved

REPORT DOCUMENTATION PAGE OMeNo.o7o4-o188

Public reportingburdenfor this collection of inlormationis estimaledto average 1 hour per response, includingthe timefor reviewing instructions,searchictgexistingdata sources,
gathering end maintainingthe data needed, and completing and reviewingthe collection of information. Send comments regardingthis burdenestimateor any other aspect of this
collection of information, includingsuggestionsfor reducingthisburden, to WashingtonHeadquarters Services,Directorate for InlormationOperationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-4302. and to the Office of Management and Budget, Paperwork ReductionProlect (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1998 Conference Publication

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Second International Workshop on Software Engineering and Code 971

Design in Parallel Meteorological and Oceanographic Applications

6. AUTHOR(S)

M. O'Keefe, C. Kerr, Editors

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Laboratory for Hydrospheric Processes

Oceans and Ice Branch

Goddard Space Flight Center

Greenbelt, Maryland 20771

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PEFORMING ORGANIZATION

REPORT NUMBER

98B00049

10. SPONSORING I MONITORING

AGENCY REPORT NUMBER

CP--1998-206860

11. SUPPLEMENTARY NOTES

O'Keefe: University of Minnesota; Kerr: International Business Machines. Workshop was cosponsored by the

U.S. Dept. of Energy, Office of Biological and Environmental Research; U.S. Dept. of Defense, High Perfor-

mance Computing and Modernization Office; NASA GSFC, Season-to-lnterannual Prediction Project.
! 2a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 61

Report available from the NASA Center for AeroSpace Information,

7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

This report contains the abstracts and technical papers from the Second International Workshop on

Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications,

held Junel5-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together soft-

ware developers in meteorology and oceanography to discuss software engineering and code design

issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector

Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-

processors, and clusters. Issues to be discussed include: (i) code architectures for current parallel

models, including basic data structures, storage allocation, variable naming conventions, coding rules

and styles, i/o and pre/post-processing of data; (ii) designing modular code; (iii) load balancing and

domain decomposition; (iv) techniques that exploit parallelism efficiently yet hide the machine-related

details from the programmer; (v) tools for making the programmer more productive; and

(vi) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

14. SUBJECT TERMS

Parallel architectures, Massively Parallel Processor, Parallel Vector Processor,

Symmetric Multi-Processor, Distributed Shared Memory multiprocessor.

17. SECURITY CLASSIRCATION 18. SECURITY CLASSIRCATION

OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

320
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39.18
298-1(72

